95 research outputs found

    The Mass Assembly History of Spheroidal Galaxies: Did Newly-Formed Systems Arise Via Major Mergers?

    Get PDF
    We examine the properties of a morphologically-selected sample of 0.4<z<1.0 spheroidal galaxies in the GOODS fields in order to ascertain whether their increase in abundance with time arises primarily from mergers. To address this question we determine scaling relations between the dynamical mass determined from stellar velocity dispersions, and the stellar mass determined from optical and infrared photometry. We exploit these relations across the larger sample for which we have stellar masses in order to construct the first statistically robust estimate of the evolving dynamical mass function over 0<z<1. The trends observed match those seen in the stellar mass functions of Bundy et al. 2005 regarding the top-down growth in the abundance of spheroidal galaxies. By referencing our dynamical masses to the halo virial mass we compare the growth rate in the abundance of spheroidals to that predicted by the assembly of dark matter halos. Our comparisons demonstrate that major mergers do not fully account for the appearance of new spheroidals since z~1 and that additional mechanisms, such as morphological transformations, are required to drive the observed evolution.Comment: Accepted to ApJL; New version corrects the Millennium merger predictions--further details at http://www.astro.utoronto.ca/~bundy/millennium

    Comparing and calibrating black hole mass estimators for distant active galactic nuclei

    Full text link
    Black hole mass is a fundamental property of active galactic nuclei (AGNs). In the distant universe, black hole mass is commonly estimated using the MgII, Hbeta, or Halpha emission line widths and the optical/UV continuum or line luminosities, as proxies for the characteristic velocity and size of the broad-line region. Although they all have a common calibration in the local universe, a number of different recipes are currently used in the literature. It is important to verify the relative accuracy and consistency of the recipes, as systematic changes could mimic evolutionary trends when comparing various samples. At z=0.36, all three lines can be observed at optical wavelengths, providing a unique opportunity to compare different empirical recipes. We use spectra from the Keck Telescope and the Sloan Digital Sky Survey to compare black hole mass estimators for a sample of nineteen AGNs at this redshift. We compare popular recipes available from the literature, finding that mass estimates can differ up to 0.38+-0.05 dex in the mean (or 0.13+-0.05 dex, if the same virial coefficient is adopted). Finally, we provide a set of 30 internally self consistent recipes for determining black hole mass from a variety of observables. The intrinsic scatter between cross-calibrated recipes is in the range 0.1-0.3 dex. This should be considered as a lower limit to the uncertainty of the black hole mass estimators.Comment: ApJ in press, 11 pages, 10 figure

    Constraints on the equation of state of dark energy and the Hubble constant from stellar ages and the CMB

    Get PDF
    We place tight constraints on the redshift-averaged, effective value of the equation of state of dark energy, w, using only the absolute ages of Galactic stars and the observed position of the first peak in the angular power spectrum of the CMB. We find w<-0.8 at the 68% confidence level. If we further consider that w > -1, this finding suggests that within our uncertainties, dark energy is indistinguishable from a classical vacuum energy term. We detect a correlation between the ages of the oldest galaxies and their redshift. This opens up the possibility of measuring w(z) by computing the relative ages of the oldest galaxies in the universe as a function of redshift, dz/dt. We show that this is a realistic possibility by computing dz/dt at z~0 from SDSS galaxies and obtain an independent estimate for the Hubble constant, H_0 = 69 \pm 12 km s-1 Mpc-1. The small number of galaxies considered at z>0.2 does not yield, currently, a precise determination of w(z), but shows that the age--redshift relation is consistent with a Standard LCDM universe with w=1w=-1.Comment: Submitted to Ap

    The fundamental plane of evolving red nuggets

    Get PDF
    We present an exploration of the mass structure of a sample of 12 strongly lensed massive, compact early-type galaxies at redshifts z0.6z\sim0.6 to provide further possible evidence for their inside-out growth. We obtain new ESI/Keck spectroscopy and infer the kinematics of both lens and source galaxies, and combine these with existing photometry to construct (a) the fundamental plane (FP) of the source galaxies and (b) physical models for their dark and luminous mass structure. We find their FP to be tilted towards the virial plane relative to the local FP, and attribute this to their unusual compactness, which causes their kinematics to be totally dominated by the stellar mass as opposed to their dark matter; that their FP is nevertheless still inconsistent with the virial plane implies that both the stellar and dark structure of early-type galaxies is non-homologous. We also find the intrinsic scatter of their FP to be comparable to the local value, indicating that variations in the stellar mass structure outweight variations in the dark halo in the central regions of early-type galaxies. Finally, we show that inference on the dark halo structure -- and, in turn, the underlying physics -- is sensitive to assumptions about the stellar initial mass function (IMF), but that physically-motivated assumptions about the IMF imply haloes with sub-NFW inner density slopes, and may present further evidence for the inside-out growth of compact early-type galaxies via minor mergers and accretion.Comment: 10 pages, 3 figures, 3 tables; submitted to MNRA

    Red nuggets grow inside-out: evidence from gravitational lensing

    Get PDF
    We present a new sample of strong gravitational lens systems where both the foreground lenses and background sources are early-type galaxies. Using imaging from HST/ACS and Keck/NIRC2, we model the surface brightness distributions and show that the sources form a distinct population of massive, compact galaxies at redshifts 0.4z0.70.4 \lesssim z \lesssim 0.7, lying systematically below the size-mass relation of the global elliptical galaxy population at those redshifts. These may therefore represent relics of high-redshift red nuggets or their partly-evolved descendants. We exploit the magnifying effect of lensing to investigate the structural properties, stellar masses and stellar populations of these objects with a view to understanding their evolution. We model these objects parametrically and find that they generally require two S\'ersic components to properly describe their light profiles, with one more spheroidal component alongside a more envelope-like component, which is slightly more extended though still compact. This is consistent with the hypothesis of the inside-out growth of these objects via minor mergers. We also find that the sources can be characterised by red-to-blue colour gradients as a function of radius which are stronger at low redshift -- indicative of ongoing accretion -- but that their environments generally appear consistent with that of the general elliptical galaxy population, contrary to recent suggestions that these objects are predominantly associated with clusters.Comment: 21 pages; accepted for publication in MNRA

    A More Fundamental Plane

    Full text link
    We combine strong-lensing masses with SDSS stellar velocity dispersions and HST-ACS effective (half-light) radii for 36 lens galaxies from the Sloan Lens ACS (SLACS) Survey to study the mass dependence of mass-dynamical structure in early-type galaxies. We find that over a 180--390 km/s range in velocity dispersion, structure is independent of lensing mass to within 5%. This result suggests a systematic variation in the total (i.e., luminous plus dark matter) mass-to-light ratio as the origin of the tilt of the fundamental plane (FP) scaling relationship between galaxy size, velocity dispersion, and surface brightness. We construct the FP of the lens sample, which we find to be consistent with the FP of the parent SDSS early-type galaxy population, and present the first observational correlation between mass-to-light ratio and residuals about the FP. Finally, we re-formulate the FP in terms of surface mass density rather than surface brightness. By removing the complexities of stellar-population effects, this mass-plane formulation will facilitate comparison to numerical simulations and possible use as a cosmological distance indicator.Comment: 4+epsilon pages, 1 figure, emulateapj. Revised version accepted for publication in the ApJ Letter

    The internal structure and formation of early-type galaxies: the gravitational--lens system MG2016+112 at z=1.004

    Full text link
    [Abridged] We combine our measurements of the velocity dispersion and the surface brightness profile of the lens galaxy D in the system MG2016+112 (z=1.004) with constraints from gravitational lensing to study its internal mass distribution. We find that: (i) dark matter accounts for >50% of the total mass within the Einstein radius (99% CL), excluding at the 8-sigma level that mass follows light inside the Einstein radius with a constant mass-to-light ratio (M/L). (ii) the total mass distribution inside the Einstein radius is well-described by a density profile ~r^-gamma' with an effective slope gamma'=2.0+-0.1+-0.1, including random and systematic uncertainties. (iii) The offset of galaxy D from the local Fundamental Plane independently constrains the stellar M/L, and matches the range derived from our models, leading to a more stringent lower limit of >60% on the fraction of dark matter within the Einstein radius (99%CL). Under the assumption of adiabatic contraction, the inner slope of the dark matter halo before the baryons collapsed is gamma_i<1.4 (68 CL), marginally consistent with the highest-resolution cold dark matter simulations that indicate gamma_i~1.5. This might indicate that either adiabatic contraction is a poor description of E/S0 formation or that additional processes play a role as well. Indeed, the apparently isothermal density distribution inside the Einstein radius, is not a natural outcome of adiabatic contraction models, where it appears to be a mere coincidence. By contrast, we argue that isothermality might be the result of a stronger coupling between luminous and dark-matter, possibly the result of (incomplete) violent relaxation processes. Hence, we conclude that galaxy D appears already relaxed 8 Gyr ago.Comment: 8 pages, 4 figures, ApJ, in press, minor change

    The Sloan-Lens ACS Survey II: stellar populations and internal structure of early-type lens galaxies

    Get PDF
    We derive Fundamental Plane parameters of 15 early-type lens galaxies identified by the Sloan Lens ACS (SLACS) Survey. The size of the sample allows us to investigate for the first time the distribution of lens galaxies in the FP space. After correcting for evolution, we find that lens galaxies occupy a subset of the local FP. The edge-on projection (approximately M vs M/L) is indistinguishable from that of normal early-type galaxies. However -- within the fundamental plane -- the lens galaxies appear to concentrate at the edge of the region populated by normal early-type galaxies. We show that this is a result of our selection procedure (approximately velocity dispersion sigma>240km/s). We conclude that SLACS lenses are a fair sample of high velocity dispersion early-type galaxies. By comparing the central stellar velocity dispersion that of the best fit lens model, we find == =1.01+-0.02 with 0.065 rms scatter. We conclude that within the Einstein radii the SLACS lenses are very well approximated by isothermal ellipsoids, requiring a fine tuning of the stellar and dark matter distribution (bulge-halo ``conspiracy''). Interpreting the offset from the local FP in terms of evolution of the stellar mass-to-light ratio, we find for the SLACS lenses d log M/L_B/dz=-0.69+-0.08 (rms 0.11) consistent with the rate found for field early-type galaxies and with a scenario where most of the stars were formed at high redshift (>2) with secondary episodes of star formation providing less than ~10% of the stellar mass below z=1. We discuss star formation history and structural homogeneity in the context of formation mechanisms such as collisionless (``dry'') mergers. [Abridged]Comment: 2006, ApJ, 604, 622; 13 pages, 7 figures, 2 tables. Replaced Table 2, since the previous version was incorrectly sorted. Updated references. No changes in plots or content. More info available at SLACS website www.slacs.or

    Shock cooling of a red-supergiant supernova at redshift 3 in lensed images

    Full text link
    The core-collapse supernova of a massive star rapidly brightens when a shock, produced following the collapse of its core, reaches the stellar surface. As the shock-heated star subsequently expands and cools, its early-time light curve should have a simple dependence on the progenitor's size and therefore final evolutionary state. Measurements of the progenitor's radius from early light curves exist for only a small sample of nearby supernovae, and almost all lack constraining ultraviolet observations within a day of explosion. The several-day time delays and magnifying ability of galaxy-scale gravitational lenses, however, should provide a powerful tool for measuring the early light curves of distant supernovae, and thereby studying massive stellar populations at high redshift. Here we analyse individual rest-frame ultraviolet-through-optical exposures taken with the Hubble Space Telescope that simultaneously capture, in three separate gravitationally lensed images, the early phases of a supernova at redshift z3z \approx 3 beginning within 5.8±3.15.8\pm 3.1 hr of explosion. The supernova, seen at a lookback time of 11.5\sim11.5 billion years, is strongly lensed by an early-type galaxy in the Abell 370 cluster. We constrain the pre-explosion radius to be 533119+154533^{+154}_{-119} solar radii, consistent with a red supergiant. Highly confined and massive circumstellar material at the same radius can also reproduce the light curve, but is unlikely since no similar low-redshift examples are known.Comment: 69 pages, 12 figures/tables (4 main text, 8 extended data). Published in Natur

    Flashlights: Properties of Highly Magnified Images Near Cluster Critical Curves in the Presence of Dark Matter Subhalos

    Full text link
    Dark matter subhalos with extended profiles and density cores, and globular stars clusters of mass 106108M10^6-10^8 M_\odot, that live near the critical curves in galaxy cluster lenses can potentially be detected through their lensing magnification of stars in background galaxies. In this work we study the effect such subhalos have on lensed images, and compare to the case of more well studied microlensing by stars and black holes near critical curves. We find that the cluster density gradient and the extended mass distribution of subhalos are important in determining image properties. Both lead to an asymmetry between the image properties on the positive and negative parity sides of the cluster that is more pronounced than in the case of microlensing. For example, on the negative parity side, subhalos with cores larger than about 5050\,pc do not generate any images with magnification above 100\sim 100 outside of the immediate vicinity of the cluster critical curve. We discuss these factors using analytical and numerical analysis, and exploit them to identify observable signatures of subhalos: subhalos create pixel-to-pixel flux variations of 0.1\gtrsim 0.1 magnitudes, on the positive parity side of clusters. These pixels tend to cluster around (otherwise invisible) subhalos. Unlike in the case of microlensing, signatures of subhalo lensing can be found up to 11'' away from the critical curves of massive clusters.Comment: ApJ, submitted, 21 pages, 17 figure
    corecore