1,038 research outputs found

    Resource Letter: Gravitational Lensing

    Full text link
    This Resource Letter provides a guide to a selection of the literature on gravitational lensing and its applications. Journal articles, books, popular articles, and websites are cited for the following topics: foundations of gravitational lensing, foundations of cosmology, history of gravitational lensing, strong lensing, weak lensing, and microlensing.Comment: Resource Letter, 2012, in press (http://ajp.dickinson.edu/Readers/resLetters.html); 21 pages, no figures; diigo version available at http://groups.diigo.com/group/gravitational-lensin

    The Sloan Lens ACS Survey. IX. Colors, Lensing and Stellar Masses of Early-type Galaxies

    Full text link
    We present the current photometric dataset for the Sloan Lens ACS (SLACS) Survey, including HST photometry from ACS, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade `A' (certain) lens systems, bringing the number of SLACS grade `A' lenses to 85; including 13 grade `B' (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade `A' systems have elliptical morphologies while ~10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for every system, making SLACS the largest homogeneous dataset of galaxy-scale lenses to date. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10^10.5 to 10^11.8 M⊙_\odot and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier IMF. The ensemble properties of the SLACS lens galaxies, e.g. stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M* >~ 10^11 M⊙_\odot, and are therefore an ideal dataset to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z ~ 0.5.Comment: 20 pages, 18 figures, 5 tables, published in Ap

    Strong Lensing by Galaxies

    Full text link
    Strong lensing is a powerful tool to address three major astrophysical issues: understanding the spatial distribution of mass at kpc and sub-kpc scale, where baryons and dark matter interact to shape galaxies as we see them; determining the overall geometry, content, and kinematics of the universe; studying distant galaxies, black holes, and active nuclei that are too small or too faint to be resolved or detected with current instrumentation. After summarizing strong gravitational lensing fundamentals, I present a selection of recent important results. I conclude by discussing the exciting prospects of strong gravitational lensing in the next decade.Comment: ARA&A Vol 48 in press; preprint version prepared by the author

    The mass profile of early-type galaxies in overdense environments: the case of the double source plane gravitational lens SL2SJ02176-0513

    Get PDF
    SL2SJ02176-0513 is a remarkable lens for the presence of two multiply-imaged systems at different redshifts lensed by a foreground massive galaxy at zlens=0.656z_{\rm lens}=0.656: a bright cusp arc at zarc=1.847z_{\rm arc}=1.847 and an additional double-image system at an estimated redshift of zdbl∌2.9z_{\rm dbl}\sim2.9 based on photometry and lensing geometry. The system is located about 400 kpc away from the center of a massive group of galaxies. Mass estimates for the group are available from X-ray observations and satellite kinematics. Multicolor photometry provides an estimate of the stellar mass of the main lens galaxy. The lensing galaxy is modeled with two components (stars and dark matter), and we include the perturbing effect of the group environment, and all available constraints. We find that classic lensing degeneracies, e.g. between external convergence and mass density slope, are significantly reduced with respect to standard systems and infer tight constraints on the mass density profile: (i) the dark matter content of the main lens galaxy is in line with that of typical galaxies fdm(<Re)=0.41−0.06+0.09f_{\rm dm}(<R_{\rm e})=0.41^{+0.09}_{-0.06}; (ii) the required mass associated with the dark matter halo of the nearby group is consistent with X-ray and weak-lensing estimates (σgrp=550−240+130\sigma_{\rm grp}=550^{+130}_{-240}); (iii) accounting for the group contribution in the form of an external convergence, the slope of the mass density profile of the main lens galaxy alone is found to be α=−1.03−0.16+0.22\alpha=-1.03^{+0.22}_{-0.16}, consistent with the isothermal (α=−1\alpha=-1) slope. We demonstrate that multiple source plane systems together with good ancillary dataset can be used to disentangle local and environmental effects.Comment: 10 pages, 6 figures, submitted to A&

    The Baryon Fractions and Mass-to-Light Ratios of Early-Type Galaxies

    Full text link
    We jointly model 22 early-type gravitational lens galaxies with stellar dynamical measurements using standard CDM halo models. The sample is inhomogeneous in both its mass distributions and the evolution of its stellar populations unless the true uncertainties are significantly larger than the reported measurement errors. In general, the individual systems cannot constrain halo models, in the sense that the data poorly constrains the stellar mass fraction of the halo. The ensemble of systems, however, strongly constrains the average stellar mass represented by the visible galaxies to 0.026±0.0060.026\pm0.006 of the halo mass if we neglect adiabatic compression, rising to 0.056±0.0110.056\pm0.011 of the halo mass if we include adiabatic compression. Both estimates are significantly smaller than the global baryon fraction, corresponding to a star formation efficiency for early-type galaxies of 1010%-30%. In the adiabatically compressed models, we find an average local B-band stellar mass-to-light ratio of (M/L)_0 = (7.2\pm0.5)(M_{\sun}/L_{\sun}) that evolves by dlog⁥(M/L)/dz=−0.72±0.08d\log(M/L)/dz = -0.72\pm0.08 per unit redshift. Adjusting the isotropy of the stellar orbits has little effect on the results. The adiabatically compressed models are strongly favored if we impose either local estimates of the mass-to-light ratios of early-type galaxies or the weak lensing measurements for the lens galaxies on 100 kpc scales as model constraints.Comment: 9 figure

    Separating baryons and dark matter in cluster cores: a full 2-D lensing and dynamic analysis of Abell 383 and MS2137-23

    Get PDF
    (abridged) We utilize existing imaging and spectroscopic data for the galaxy clusters MS2137-23 and Abell 383 to present improved measures of the distribution of dark and baryonic material in the clusters' central regions. Our method, based on the combination of gravitational lensing and dynamical data, is uniquely capable of separating the distribution of dark and baryonic components at scales below 100 kpc. We find a variety of strong lensing models fit the available data, including some with dark matter profiles as steep as expected from recent simulations. However, when combined with stellar velocity dispersion data for the brightest member, shallower inner slopes than predicted by numerical simulations are preferred. For Abell 383, the preferred shallow inner slopes are statistically a good fit only when the multiple image position uncertainties associated with our lens model are assumed to be 0\farcs5, to account for unknown substructure. No statistically satisfactory fit was obtained matching both the multiple image lensing data and the velocity dispersion profile of the brightest cluster galaxy in MS2137-23. This suggests that the mass model we are using, which comprises a pseudo-elliptical generalized NFW profile and a brightest cluster galaxy component may inadequately represent the inner cluster regions. This may plausibly arise due to halo triaxiality or by the gravitational interaction of baryons and dark matter in cluster cores. However, the progress made via this detailed study highlights the key role that complementary observations of lensed features and stellar dynamics offer in understanding the interaction between dark and baryonic matter on non-linear scales in the central regions of clusters.Comment: 18 pages, 9 figures; accepted for publication in the Astrophysical Journa

    Keck Spectroscopy of distant GOODS Spheroidal Galaxies: Downsizing in a Hierarchical Universe

    Full text link
    We analyze the evolution of the Fundamental Plane for 141 field spheroidal galaxies in the redshift range 0.2<z<1.2, selected morphologically to a magnitude limit F850LP=22.43 in the northern field of the Great Observatories Origin Survey. For massive galaxies we find that the bulk of the star formation was completed prior to z=2. However, for the lower mass galaxies, the luminosity-weighted ages are significantly younger. The differential change in mass-to-light ratio correlates closely with rest-frame color, consistent with recent star formation and associated growth. Our data are consistent with mass rather than environment governing the overall growth, contrary to the expectations of hierarchical assembly. We discuss how feedback, conduction, and galaxy interactions may explain the downsizing trends seen within our large sample.Comment: ApJ Letters, in press. 4 figure

    The evolution of field early-type galaxies to z~0.7

    Get PDF
    We have measured the Fundamental Plane (FP) parameters for a sample of 30 field early-type galaxies (E/S0) in the redshift range 0.1<z<0.66. We find that: i) the FP is defined and tight out to the highest redshift bin; ii) the intercept \gamma evolves as d\gamma/dz=0.58+0.09-0.13 (for \Omega=0.3, \Omega_{\Lambda}=0.7), or, in terms of average effective mass to light ratio, as d\log(M/L_B)/dz=-0.72+0.11-0.16, i.e. faster than is observed for cluster E/S0 -0.49+-0.05. In addition, we detect [OII] emission >5\AA in 22% of an enlarged sample of 42 massive E/S0 in the range 0.1<z<0.73, in contrast with the quiescent population observed in clusters at similar z. We interpret these findings as evidence that a significant fraction of massive field E/S0 experiences secondary episodes of star-formation at z<1.Comment: ApJ Letters, in pres

    Luminous Satellites II: Spatial Distribution, Luminosity Function and Cosmic Evolution

    Full text link
    We infer the normalization and the radial and angular distributions of the number density of satellites of massive galaxies (log⁡10[Mh∗/M⊙]>10.5\log_{10}[M_{h}^*/M\odot]>10.5) between redshifts 0.1 and 0.8 as a function of host stellar mass, redshift, morphology and satellite luminosity. Exploiting the depth and resolution of the COSMOS HST images, we detect satellites up to eight magnitudes fainter than the host galaxies and as close as 0.3 (1.4) arcseconds (kpc). Describing the number density profile of satellite galaxies to be a projected power law such that P(R)\propto R^{\rpower}, we find \rpower=-1.1\pm 0.3. We find no dependency of \rpower on host stellar mass, redshift, morphology or satellite luminosity. Satellites of early-type hosts have angular distributions that are more flattened than the host light profile and are aligned with its major axis. No significant average alignment is detected for satellites of late-type hosts. The number of satellites within a fixed magnitude contrast from a host galaxy is dependent on its stellar mass, with more massive galaxies hosting significantly more satellites. Furthermore, high-mass late-type hosts have significantly fewer satellites than early-type galaxies of the same stellar mass, likely a result of environmental differences. No significant evolution in the number of satellites per host is detected. The cumulative luminosity function of satellites is qualitatively in good agreement with that predicted using subhalo abundance matching techniques. However, there are significant residual discrepancies in the absolute normalization, suggesting that properties other than the host galaxy luminosity or stellar mass determine the number of satellites.Comment: 23 pages, 12 figures, Accepted for publication in the Astrophysical Journa
    • 

    corecore