1,176 research outputs found

    Can dry merging explain the size evolution of early-type galaxies?

    Full text link
    The characteristic size of early-type galaxies (ETGs) of given stellar mass is observed to increase significantly with cosmic time, from redshift z>2 to the present. A popular explanation for this size evolution is that ETGs grow through dissipationless ("dry") mergers, thus becoming less compact. Combining N-body simulations with up-to-date scaling relations of local ETGs, we show that such an explanation is problematic, because dry mergers do not decrease the galaxy stellar-mass surface-density enough to explain the observed size evolution, and also introduce substantial scatter in the scaling relations. Based on our set of simulations, we estimate that major and minor dry mergers increase half-light radius and projected velocity dispersion with stellar mass (M) as M^(1.09+/-0.29) and M^(0.07+/-0.11), respectively. This implies that: 1) if the high-z ETGs are indeed as dense as estimated, they cannot evolve into present-day ETGs via dry mergers; 2) present-day ETGs cannot have assembled more than ~45% of their stellar mass via dry mergers. Alternatively, dry mergers could be reconciled with the observations if there was extreme fine tuning between merger history and galaxy properties, at variance with our assumptions. Full cosmological simulations will be needed to evaluate whether this fine-tuned solution is acceptable.Comment: 5 pages, 2 figures. Accepted for publication in ApJ Letter

    Constraints on the broad line region from regularized linear inversion: Velocity-delay maps for five nearby active galactic nuclei

    Full text link
    Reverberation mapping probes the structure of the broad emission-line region (BLR) in active galactic nuclei (AGN). The kinematics of the BLR gas can be used to measure the mass of the central supermassive black hole. The main uncertainty affecting black hole mass determinations is the structure of the BLR. We present a new method for reverberation mapping based on regularized linear inversion (RLI) that includes modelling of the AGN continuum light curves. This enables fast calculation of velocity-resolved response maps to constrain BLR structure. RLI allows for negative response, such as when some areas of the BLR respond in inverse proportion to a change in ionizing continuum luminosity. We present time delays, integrated response functions, and velocity-delay maps for the Hβ\rm{H}\,\beta broad emission line in five nearby AGN, as well as for Hα\rm{H}\,\alpha and Hγ\rm{H}\,\gamma in Arp 151, using data from the Lick AGN Monitoring Project 2008. We find indications of prompt response in three of the objects (Arp 151, NGC 5548 and SBS 1116+583A) with additional prompt response in the red wing of Hβ\rm{H}\,\beta. In SBS 1116+583A we find evidence for a multimodal broad prompt response followed by a second narrow response at 10 days. We find no clear indications of negative response. The results are complementary to, and consistent with, other methods such as cross correlation, maximum entropy and dynamical modelling. Regularized linear inversion with continuum light curve modelling provides a fast, complementary method for velocity-resolved reverberation mapping and is suitable for use on large datasets.Comment: 20 pages, 13 figures, accepted to MNRA

    The X-shooter Lens Survey - II. Sample presentation and spatially resolved kinematics

    Get PDF
    We present the X-shooter Lens Survey (XLENS) data. The main goal of XLENS is to disentangle the stellar and dark matter content of massive early-type galaxies (ETGs), through combined strong gravitational lensing, dynamics and spectroscopic stellar population studies. The sample consists of 11 lens galaxies covering the redshift range from 0.10.1 to 0.450.45 and having stellar velocity dispersions between 250250 and 380kms1380\,\mathrm{km}\,\mathrm{s}^{-1}. All galaxies have multi-band, high-quality HST imaging. We have obtained long-slit spectra of the lens galaxies with X-shooter on the VLT. We are able to disentangle the dark and luminous mass components by combining lensing and extended kinematics data-sets, and we are also able to precisely constrain stellar mass-to-light ratios and infer the value of the low-mass cut-off of the IMF, by adding spectroscopic stellar population information. Our goal is to correlate these IMF parameters with ETG masses and investigate the relation between baryonic and non-baryonic matter during the mass assembly and structure formation processes. In this paper we provide an overview of the survey, highlighting its scientific motivations, main goals and techniques. We present the current sample, briefly describing the data reduction and analysis process, and we present the first results on spatially resolved kinematics.Comment: Accepted for publication in MNRA

    HST followup observations of two bright z ~ 8 candidate galaxies from the BoRG pure-parallel survey

    Get PDF
    We present followup imaging of two bright (L > L*) galaxy candidates at z > 8 from the Brightest of Reionizing Galaxies (BoRG) survey with the F098M filter on HST/WFC3. The F098M filter provides an additional constraint on the flux blueward of the spectral break, and the observations are designed to discriminate between low- and high-z photometric redshift solutions for these galaxies. Our results confirm one galaxy, BoRG 0116+1425 747, as a highly probable z ~ 8 source, but reveal that BoRG 0116+1425 630 - previously the brightest known z > 8 candidate (mAB = 24.5) - is likely to be a z ~ 2 interloper. As this source was substantially brighter than any other z > 8 candidate, removing it from the sample has a significant impact on the derived UV luminosity function in this epoch. We show that while previous BoRG results favored a shallow power-law decline in the bright end of the luminosity function prior to reionization, there is now no evidence for departure from a Schechter function form and therefore no evidence for a difference in galaxy formation processes before and after reionization.Comment: Accepted by ApJL, 7 pages, 4 figure

    The Baryon Fractions and Mass-to-Light Ratios of Early-Type Galaxies

    Full text link
    We jointly model 22 early-type gravitational lens galaxies with stellar dynamical measurements using standard CDM halo models. The sample is inhomogeneous in both its mass distributions and the evolution of its stellar populations unless the true uncertainties are significantly larger than the reported measurement errors. In general, the individual systems cannot constrain halo models, in the sense that the data poorly constrains the stellar mass fraction of the halo. The ensemble of systems, however, strongly constrains the average stellar mass represented by the visible galaxies to 0.026±0.0060.026\pm0.006 of the halo mass if we neglect adiabatic compression, rising to 0.056±0.0110.056\pm0.011 of the halo mass if we include adiabatic compression. Both estimates are significantly smaller than the global baryon fraction, corresponding to a star formation efficiency for early-type galaxies of 1010%-30%. In the adiabatically compressed models, we find an average local B-band stellar mass-to-light ratio of (M/L)_0 = (7.2\pm0.5)(M_{\sun}/L_{\sun}) that evolves by dlog(M/L)/dz=0.72±0.08d\log(M/L)/dz = -0.72\pm0.08 per unit redshift. Adjusting the isotropy of the stellar orbits has little effect on the results. The adiabatically compressed models are strongly favored if we impose either local estimates of the mass-to-light ratios of early-type galaxies or the weak lensing measurements for the lens galaxies on 100 kpc scales as model constraints.Comment: 9 figure

    A twelve-image gravitational lens system in the z ~ 0.84 cluster Cl J0152.7-1357

    Full text link
    Gravitational lens modeling is presented for the first discovered example of a three-component source for which each component is quadruply imaged. The lens is a massive galaxy member of the cluster Cl J0152.7-1357 at z ~ 0.84. Taking advantage of this exceptional configuration and of the excellent angular resolution of the HST/ACS, we measure the properties of the lens. Several parametric macroscopic models were developed for the lens galaxy, starting from pointlike to extended image models. For a lens model in terms of a singular isothermal sphere with external shear, the Einstein radius is found to be R_{E} = (9.54 +/- 0.15) kpc. The external shear points to the cluster's northern mass peak. The unknown redshift of the source is determined to be higher than 1.9 and lower than 2.9. Our estimate of the lensing projected total mass inside the Einstein radius, M_{len}(R < 9.54 kpc), depends on the source distance and lies between 4.6 and 6.2 x 10^{11} M_{Sun}. This result turns out to be compatible with the dynamical estimate based on an isothermal model. By considering the constraint on the stellar mass-to-light ratio that comes from the evolution of the Fundamental Plane, we can exclude the possibility that at more than 4 sigma level the total mass enclosed inside the Einstein ring is only luminous matter. Moreover, the photometric-stellar mass measurement within the Einstein radius gives a minimum value of 50% (1 sigma) for the dark-to-total matter fraction. The lensing analysis has allowed us to investigate the distribution of mass of the deflector, also providing some interesting indications on scales that are larger and smaller than the Einstein radius of the lens galaxy. The combination of different diagnostics has proved to be essential in determining quantities that otherwise would have not been directly measurable with the current data.Comment: 10 pages, 9 figures, accepted by Astronomy & Astrophysic

    The SWELLS Survey. I. A large spectroscopically selected sample of edge-on late-type lens galaxies

    Get PDF
    The relative contribution of baryons and dark matter to the inner regions of spiral galaxies provides critical clues to their formation and evolution, but it is generally difficult to determine. For spiral galaxies that are strong gravitational lenses, however, the combination of lensing and kinematic observations can be used to break the disk-halo degeneracy. In turn, such data constrain fundamental parameters such as i) the mass density profile slope and axis ratio of the dark matter halo, and by comparison with dark matter-only numerical simulations the modifications imposed by baryons; ii) the mass in stars and therefore the overall star formation efficiency, and the amount of feedback; iii) by comparison with stellar population synthesis models, the normalization of the stellar initial mass function. In this first paper of a series, we present a sample of 16 secure, 1 probable, and 6 possible strong lensing spiral galaxies, for which multi-band high-resolution images and rotation curves were obtained using the Hubble Space Telescope and Keck-II Telescope as part of the Sloan WFC Edge-on Late-type Lens Survey (SWELLS). The sample includes 8 newly discovered secure systems. [abridged] We find that the SWELLS sample of secure lenses spans a broad range of morphologies (from lenticular to late-type spiral), spectral types (quantified by Halpha emission), and bulge to total stellar mass ratio (0.22-0.85), while being limited to M_*>10^{10.5} M_sun. The SWELLS sample is thus well-suited for exploring the relationship between dark and luminous matter in a broad range of galaxies. We find that the deflector galaxies obey the same size-mass relation as that of a comparison sample of elongated non-lens galaxies selected from the SDSS survey. We conclude that the SWELLS sample is consistent with being representative of the overall population of high-mass high-inclination disky galaxies.Comment: 21 pages, 6 figures, MNRAS, in pres

    Luminous Satellites II: Spatial Distribution, Luminosity Function and Cosmic Evolution

    Full text link
    We infer the normalization and the radial and angular distributions of the number density of satellites of massive galaxies (log10[Mh/M]>10.5\log_{10}[M_{h}^*/M\odot]>10.5) between redshifts 0.1 and 0.8 as a function of host stellar mass, redshift, morphology and satellite luminosity. Exploiting the depth and resolution of the COSMOS HST images, we detect satellites up to eight magnitudes fainter than the host galaxies and as close as 0.3 (1.4) arcseconds (kpc). Describing the number density profile of satellite galaxies to be a projected power law such that P(R)\propto R^{\rpower}, we find \rpower=-1.1\pm 0.3. We find no dependency of \rpower on host stellar mass, redshift, morphology or satellite luminosity. Satellites of early-type hosts have angular distributions that are more flattened than the host light profile and are aligned with its major axis. No significant average alignment is detected for satellites of late-type hosts. The number of satellites within a fixed magnitude contrast from a host galaxy is dependent on its stellar mass, with more massive galaxies hosting significantly more satellites. Furthermore, high-mass late-type hosts have significantly fewer satellites than early-type galaxies of the same stellar mass, likely a result of environmental differences. No significant evolution in the number of satellites per host is detected. The cumulative luminosity function of satellites is qualitatively in good agreement with that predicted using subhalo abundance matching techniques. However, there are significant residual discrepancies in the absolute normalization, suggesting that properties other than the host galaxy luminosity or stellar mass determine the number of satellites.Comment: 23 pages, 12 figures, Accepted for publication in the Astrophysical Journa
    corecore