1,335 research outputs found

    Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers

    Get PDF
    Aerogels are typically manufactured vIa high temperature and pressure-critical-point drying of a colloidal metal oxide gel filled with solvents. Aerogel materials derived from silica materials represent a structural morphology (amorphous, open-celled nanofoams) rather than a particular chemical constituency. Aerogel is not like conventional foams in that it is a porous material with extreme microporosity and composed of individual features only a few nanometers in length with a highly porous dendriticlike structure. This unique substance has unusual properties such as low thermal conductivity, refractive index and sound suppression; in addition to its exceptional ability to capture fast moving dust. The highly porous nature of the aerogel's structure provides large amounts of surface area per unit weight. For instance, a silica aerogel material with a density of 100 kilograms per cubic meters can have surface areas of around 800 to 1500 square meters per gram depending on the precursors and process utilized to produce it. To take advantage of the unique properties of silica aerogels, especially the ultra light weight and low thermal conductivity, their composites with various engineering polymers were prepared and their flammability was investigated by Cone Calorimetry. The flammability of various polystyrene/silica aerogel nanocomposites were measured. The combination of these nanocomposites with a NASA patented flame retardant SINK were also studied. The results were compared with the base polymer to show the differences between composites with different forms of silica

    Self-Healing Polymer Materials for Wire Insulation, Polyimides, Flat Surfaces, and Inflatable Structures

    Get PDF
    Materials based on low melt polyimide, polyurea, or polyurethane chemistry have been developed which exhibit self-healing properties. These high performance polymers can be utilized either by themselves or in combination with microcapsule technology to deliver self-healing properties to electrical wire insulation or in other high performance, thin wall technologies such as inflatable structures

    Achilles tendon material properties are greater in the jump leg of jumping athletes

    Get PDF
    Purpose: The Achilles tendon (AT) must adapt to meet changes in demands. This study explored AT adaptation by comparing properties within the jump and non-jump legs of jumping athletes. Non-jumping control athletes were included to control limb dominance effects. Methods: AT properties were assessed in the preferred (jump) and non-preferred (lead) jumping legs of male collegiate-level long and/or high jump (jumpers; n=10) and cross-country (controls; n=10) athletes. Cross-sectional area (CSA), elongation, and force during isometric contractions were used to estimate the morphological, mechanical and material properties of the ATs bilaterally. Results: Jumpers exposed their ATs to more force and stress than controls (all p≤0.03). AT force and stress were also greater in the jump leg of both jumpers and controls than in the lead leg (all p0.05). Conclusion: ATs chronically exposed to elevated mechanical loading were found to exhibit greater mechanical (stiffness) and material (Young’s modulus) properties
    • …
    corecore