1,388 research outputs found

    Applied Force and sEMG Muscle Activity Required To Operate Pistol Grip Control in an Electric Utility Aerial Bucket

    Get PDF
    Electric utility line workers report high levels of fatigue in forearm muscles when operating a conventional pistol grip control in aerial buckets. This study measured the applied force and surface electromyographic (sEMG) signals from four upper extremity muscles required to operate the pistol grip control in two tasks. The first task was movement of the pistol grip in six directions (up/down, forward/rearward, clockwise/counter-clockwise), and the second task was movement of the bucket from its resting position on the truck bed to an overhead conductor on top of a 40 ft tall pole. The force applied to the pistol grip was measured in 14 aerial bucket trucks, and sEMG activity was measured on eight apprentice line workers. The applied force required to move the pistol grip control in the six directions ranged from 12 to 15 lb. The sEMG activity in the extensor digitorum communis (EDC) forearm muscle was approximately twice as great or more than the other three muscles (flexor digitorum superficialis, triceps, and biceps). Line workers exerted 14 to 30% MVCEMG to move the pistol grip in the six directions. Average %MVCEMG of the EDC to move the bucket from the truck platform to an overhead line ranged from 26 to 30% across the four phases of the task. The sEMG findings from this study provide physiologic evidence to support the anecdotal reports of muscle fatigue from line workers after using the pistol grip control for repeated, long durations

    Blogging about Service-Learning Experiences

    Get PDF
    Presentation given at the SoTL Commons: A Conference for the Scholarship of Teaching and Learning. This project examines a year-long Honors First Year Experience course in Animal-Assisted Therapy, a course introducing students to the effects of therapy animals on various populations with various conditions in multiple settings. From Fall 2012 to Spring 2013, students were required to participate in service-learning activities with either the local chapter of Therapy Dogs International or the local therapeutic horseback riding program and to blog about their experiences. For their blogs, students had to describe their experiences, their reactions to the experiences, how the experiences related to the course, and any questions or concerns that arose. Qualitative analyses of students’ blogs were conducted, using a Grounded Theory approach. Results revealed that students could identify the key role therapy animals can play in enhancing rehabilitation and development. Additionally, service-learning augmented the students’ knowledge of, awareness of, and interest in animal-assisted therapy and showed how animals themselves appear to act as crucial learning instruments in certain settings. Session objectives include introducing attendees to service-learning and exploring the lurking implication that animals can enhance learning environments. Attendees will learn how service-learning has the potential to add to all disciplines and will be challenged to think of ways to implement animals into student learning

    Multi-disciplinary Collaborations in Measurement of Human Motion

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionBioengineering is a broad and rapidly-growing discipline defined as the application of engineering principles to biological systems. Although bioengineering is diverse in nature, the study of human movement is common to many bioengineering subdisciplines such as biomechanics and biometrics. Biomechanics is the science that examines the forces acting upon and within a biological structure and effects produced by such forces [1]. Measurement of ground reaction forces, limb motion, and muscle activation are fundamental research components in musculoskeletal biomechanics. Researchers in this field have used these measurements to quantify human gait, balance, and posture in a multitude of applications including age-related fall risk [2-4], muscle fatigue [5-7], and balance-related pathologies such as Parkinson's disease [8-10], and stroke [11, 12]. Additionally, these measurements play a vital role in computational biomechanics models. For example, the inverse dynamics method incorporates measured ground reaction forces and body motions to calculate the net reaction forces and torques acting on body joints [13]. Biometrics is the science of confirming or discovering individuals' identities based on their specific biological or behavioral traits [14]. Gait is one such modality which can be used for biometric identification. It is based on the uniqueness of an individual's locomotion patterns [15]. In addition, we are interested in high-speed video analyses of micro-saccades and blink reflexes for spoof-proofing of biometric identification systems, biometric identification, and psychometry. We have shown that startle blink intensity can be derived from high- speed video [18], enabling video-based psychophysiological biometrics for detection of subject-specific affective-cognitive information [19]. The Human Motion Laboratory at the University of Missouri - Kansas City is dedicated to measuring the characteristics of human motion. The lab includes a VICON MX 6-camera motion capture system, 4 AMTI OR6-6 force platforms, and a Delsys Myomonitor IV 16-channel wireless EMG system. This equipment represents an experimental infrastructure mutually supporting the biomechanics and biometrics research efforts of four research labs. The scope of these research efforts includes aging, affective computing, psychophysiological biometrics, orthopedics, and human dynamics pathology. The lab capitalizes on a synergistic environment for characterization and measurement of human movement and the interrelated nature of the research activities. The four main research areas that the Human Motion Laboratory supports are: •Computational Biomechanics •Biometrics of Human Motion •Experimental Biomechanics •Body Area Sensor Network

    An experimental investigation of chatter effects on tool life

    Get PDF
    Tool wear is one of the most important considerations in machining operations as it affects surface quality and integrity, productivity and cost. The most commonly used model for tool life analysis is the one proposed by F.W. Taylor about a century ago. Although the extended form of this equation includes the effects of important cutting conditions on tool wear, tool life studies are mostly performed under stable cutting conditions where the effect of chatter vibrations are not considered. This paper presents an empirical attempt to understand tool life under vibratory cutting conditions. Tool wear data are collected in turning and milling on different work materials under stable and chatter conditions. The effects of cutting conditions as well as severity of chatter on tool life are analyzed. The results indicate significant reduction in tool life due to chatter as expected. They also show that the severity of chatter, and thus the vibration amplitude, strongly reduces the life of cutting tools. These results can be useful in evaluating the real cost of chatter by including the reduced tool life. They can also be useful in justifying the cost of chatter suppression and more rigid machining systems

    TESTING the BINARY TRIGGER HYPOTHESIS in FUors

    Get PDF
    We present observations of three FU Orionis objects (hereafter, FUors) with nonredundant aperture-mask interferometry at 1.59 μm and 2.12 μm that probe for binary companions on the scale of the protoplanetary disk that feeds their accretion outbursts. We do not identify any companions to V1515 Cyg or HBC 722, but we do resolve a close binary companion to V1057 Cyg that is at the diffraction limit (ρ=58.3±1.4\rho =58.3\pm 1.4 mas or 30 ± 5 au) and currently much fainter than the outbursting star (ΔK=3.34±0.10{\rm{\Delta }}K^{\prime} =3.34\pm 0.10 mag). Given the flux excess of the outbursting star, we estimate that the mass of the companion (M0.25MM\sim 0.25{M}_{\odot }) is similar to or slightly below that of the FUor itself, and therefore it resembles a typical T Tauri binary system. Our observations only achieve contrast limits of ΔK4{\rm{\Delta }}K^{\prime} \sim 4 mag, and hence we are only sensitive to companions that were near or above the pre-outburst luminosity of the FUors. It remains plausible that FUor outbursts could be tied to the presence of a close binary companion. However, we argue from the system geometry and mass reservoir considerations that these outbursts are not directly tied to the orbital period (i.e., occurring at periastron passage), but instead must only occur infrequently

    Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens

    Get PDF
    BACKGROUND: In learning and memory tasks, requiring visual spatial memory (VSM), males exhibit superior performance to females (a difference attributed to the hormonal influence of estrogen). This study examined the influence of phytoestrogens (estrogen-like plant compounds) on VSM, utilizing radial arm-maze methods to examine varying aspects of memory. Additionally, brain phytoestrogen, calbindin (CALB), and cyclooxygenase-2 (COX-2) levels were determined. RESULTS: Female rats receiving lifelong exposure to a high-phytoestrogen containing diet (Phyto-600) acquired the maze faster than females fed a phytoestrogen-free diet (Phyto-free); in males the opposite diet effect was identified. In a separate experiment, at 80 days-of-age, animals fed the Phyto-600 diet lifelong either remained on the Phyto-600 or were changed to the Phyto-free diet until 120 days-of-age. Following the diet change Phyto-600 females outperformed females switched to the Phyto-free diet, while in males the opposite diet effect was identified. Furthermore, males fed the Phyto-600 diet had significantly higher phytoestrogen concentrations in a number of brain regions (frontal cortex, amygdala & cerebellum); in frontal cortex, expression of CALB (a neuroprotective calcium-binding protein) decreased while COX-2 (an inducible inflammatory factor prevalent in Alzheimer's disease) increased. CONCLUSIONS: Results suggest that dietary phytoestrogens significantly sex-reversed the normal sexually dimorphic expression of VSM. Specifically, in tasks requiring the use of reference, but not working, memory, VSM was enhanced in females fed the Phyto-600 diet, whereas, in males VSM was inhibited by the same diet. These findings suggest that dietary soy derived phytoestrogens can influence learning and memory and alter the expression of proteins involved in neural protection and inflammation in rats
    corecore