356 research outputs found

    Chiral phase transitions in strong chromomagnetic fields at finite temperature and dimensional reduction

    Get PDF
    Dynamical fermion mass generation in external chromomagnetic fields is considered at non--zero temperature. The general features of dynamical chiral symmetry breaking (DχSBD\chi SB) are investigated for several field configurations in relation to their symmetry properties and the form of the quark spectrum. According to the fields, there arises dimensional reduction by one or two units. In all cases there exists DχSBD\chi SB even at weak quark attraction, confirming the idea about the dimensional insensitivity of this mechanism in a chromomagnetic field.Comment: LATEX file, 12 pages, no figure

    No First-Order Phase Transition in the Gross-Neveu Model?

    Full text link
    Within a variational calculation we investigate the role of baryons for the structure of dense matter in the Gross-Neveu model. We construct a trial ground state at finite baryon density which breaks translational invariance. Its scalar potential interpolates between widely spaced kinks and antikinks at low density and the value zero at infinite density. Its energy is lower than the one of the standard Fermi gas at all densities considered. This suggests that the discrete gamma_5 symmetry of the Gross-Neveu model does not get restored in a first order phase transition at finite density, at variance with common wisdom.Comment: 16 pages, 7 figures, LaTe

    Emergence of Skyrme crystal in Gross-Neveu and 't Hooft models at finite density

    Get PDF
    We study two-dimensional, large NN field theoretic models (Gross-Neveu model, 't Hooft model) at finite baryon density near the chiral limit. The same mechanism which leads to massless baryons in these models induces a breakdown of translational invariance at any finite density. In the chiral limit baryonic matter is characterized by a spatially varying chiral angle with a wave number depending only on the density. For small bare quark masses a sine-Gordon kink chain is obtained which may be regarded as simplest realization of the Skyrme crystal for nuclear matter. Characteristic differences between confining and non-confining models are pointed out.Comment: 27 pages, 11 figures, added reference, corrected sig

    Gross-Neveu Models, Nonlinear Dirac Equations, Surfaces and Strings

    Full text link
    Recent studies of the thermodynamic phase diagrams of the Gross-Neveu model (GN2), and its chiral cousin, the NJL2 model, have shown that there are phases with inhomogeneous crystalline condensates. These (static) condensates can be found analytically because the relevant Hartree-Fock and gap equations can be reduced to the nonlinear Schr\"odinger equation, whose deformations are governed by the mKdV and AKNS integrable hierarchies, respectively. Recently, Thies et al have shown that time-dependent Hartree-Fock solutions describing baryon scattering in the massless GN2 model satisfy the Sinh-Gordon equation, and can be mapped directly to classical string solutions in AdS3. Here we propose a geometric perspective for this result, based on the generalized Weierstrass spinor representation for the embedding of 2d surfaces into 3d spaces, which explains why these well-known integrable systems underlie these various Gross-Neveu gap equations, and why there should be a connection to classical string theory solutions. This geometric viewpoint may be useful for higher dimensional models, where the relevant integrable hierarchies include the Davey-Stewartson and Novikov-Veselov systems.Comment: 27 pages, 1 figur

    10 years of decision‐making for biodiversity conservation actions: A systematic literature review

    Get PDF
    Decision science emphasizes necessary elements required for robust decision-making. By incorporating decision science principles, frameworks, and tools, it has been demonstrated that decision-makers can increase the chances of achieving conservation aims. Setting measurable objectives, clearly documenting assumptions about the impact of available actions on a specific threat or problem, explicitly considering constraints, exploring and characterizing uncertainty, and structured deliberation on trade-offs have been identified as key elements of successful decision-making. We quantify the extent to which these five elements were utilized in published examples of decision making in conservation in both academic and conservation practice between 2009 and 2018. We found that less than 50% of identified examples included all five elements, with differences in the degree of decision science applied across five commonly used decision support approaches: adaptive management (AM), systematic conservation planning (SCP), structured decision making (SDM), multi-criteria decision analysis, and cost-effectiveness analysis. Example applications that utilized the SDM framework were limited in numbers but used on average more than 50% of the five key elements we considered. Although SCP and AM constituted the majority of examples, they were more prevalent in academic studies rather than management applications. SCP and AM examples were widespread in protected area planning, threat abatement, and restoration. Strong geographic bias exists in documented conservation activities that deploy all five decision science elements

    Group discussions improve reliability and validity of rated categories based on qualitative data from systematic review

    Get PDF
    The number of literature reviews in the fields of ecology and conservation has increased dramatically in recent years. Scientists conduct systematic literature reviews with the aim of drawing conclusions based on the content of a representative sample of publications. This requires subjective judgments on qualitative content, including interpretations and deductions. However, subjective judgments can differ substantially even between highly trained experts that are faced with the same evidence. Because classification of content into codes by one individual rater is prone to subjectivity and error, general guidelines recommend checking the produced data for consistency and reliability. Metrics on agreement between multiple people exist to assess the rate of agreement (consistency). These metrics do not account for mistakes or allow for their correction, while group discussions about codes that have been derived from classification of qualitative data have shown to improve reliability and accuracy. Here, we describe a pragmatic approach to reliability testing that gives insights into the error rate of multiple raters. Five independent raters rated and discussed categories for 23 variables within 21 peer-reviewed publications on conservation management plans. Mistakes, including overlooking information in the text, were the most common source of disagreement, followed by differences in interpretation and ambiguity around categories. Discussions could resolve most differences in ratings. We recommend our approach as a significant improvement on current review and synthesis approaches that lack assessment of misclassification

    Autonomous motility of polymer films coupled to stimuli gradients

    Get PDF
    Adaptive soft materials exhibit a diverse set of behaviors including reconfiguration, actuation, and locomotion. These responses are typically optimized in isolation. Here, we explore the interrelation between these behaviors by developing a behavioral phase diagram for hygromorphic polymer films. We determine that the dynamic behaviors are a result of not only a response to, but also an interaction with a humidity gradient, which can be tuned via control of the environment and film characteristics, including size, permeability and coefficient of hygroscopic expansion to target a desired behavior such as multi-modal locomotion. Using the improved understanding of stimuli interactive materials gained from our study of monolithic polymer films, we demonstrate how robust composites can be designed to exhibit autonomous, environmentally-responsive behaviors, and how these concepts can be incorporated into origami structures to engineer the extent and sequence of motions

    Does the timed up and go test predict future falls among British community-dwelling older people? Prospective cohort study nested within a randomised controlled trial

    Get PDF
    Background Falling is common among older people. The Timed-Up-and-Go Test (TUG) is recommended as a screening tool for falls but its predictive value has been challenged. The objectives of this study were to examine the ability of TUG to predict future falls and to estimate the optimal cut-off point to identify those with higher risk for future falls. Methods This is a prospective cohort study nested within a randomised controlled trial including 259 British community-dwelling older people ≥65 years undergoing usual care. TUG was measured at baseline. Prospective diaries captured falls over 24 weeks. A Receiver Operating Characteristic curve analysis determined the optimal cut-off point to classify future falls risk with sensitivity, specificity, and predictive values of TUG times. Logistic regression models examined future falls risk by TUG time. Results Sixty participants (23%) fell during the 24 weeks. The area under the curve was 0.58 (95% confidence interval (95% CI) = 0.49-0.67, p = 0.06), suggesting limited predictive value. The optimal cut-off point was 12.6 seconds and the corresponding sensitivity, specificity, and positive and negative predictive values were 30.5%, 89.5%, 46.2%, and 81.4%. Logistic regression models showed each second increase in TUG time (adjusted for age, gender, comorbidities, medications and past history of two falls) was significantly associated with future falls (adjusted odds ratio (OR) = 1.09, 95% CI = 1.00-1.19, p = 0.05). A TUG time ≥12.6 seconds (adjusted OR = 3.94, 95% CI = 1.69-9.21, p = 0.002) was significantly associated with future falls, after the same adjustments. Conclusions TUG times were significantly and independently associated with future falls. The ability of TUG to predict future falls was limited but with high specificity and negative predictive value. TUG may be most useful in ruling in those with a high risk of falling rather than as a primary measure in the ascertainment of risk

    Alcohol and fatal life trajectories in Russia: understanding narrative accounts of premature male death in the family

    Get PDF
    Background: In the post-Soviet period, Russian working-age men have suffered unusually high mortality rates. Earlier quantitative work found that part of this is attributable to hazardous and harmful patterns of alcohol consumption, which increased in the period of transition at a time of massive social and economic disruption and uncertainty. However, there has been very little work done to document and understand in detail the downward life trajectories of individual men who died prematurely from alcohol-related conditions. Building on an earlier case-control study, this unique qualitative study investigates the perceived interplay between men's drinking careers, their employment and family history, health and eventual death.Methods: In-depth interviews were conducted with close relatives (most often the widow) of 19 men who died between 2003 and 2005 aged 25-54 years whose close relatives reported that alcohol contributed to their death. The study was conducted in a typical medium-sized Russian city. The relative's accounts were analysed using thematic content analysis.Results: The accounts describe how hazardous drinking both contributed to serious employment, family and health problems, and was simultaneously used as a coping mechanism to deal with life crises and a decline in social status. The interviews highlighted the importance of the workplace and employment status for shaping men's drinking patterns. Common themes emerged around a culture of drinking in the workplace, peer pressure from colleagues to drink, use of alcohol as remuneration, consuming non-beverage alcohols,Russian-specific drinking patterns, attitudes to treatment, and passive attitudes towards health and drinking.Conclusions: The study provides a unique insight into the personal decline that lies behind the extremely high working-age mortality due to heavy drinking in Russia, and highlights how health status and hazardous drinking are often closely intertwined with economic and social functioning. Descriptions of the development of drinking careers, hazardous drinking patterns and treatment experiences can be used to plan effective interventions relevant in the Russian context

    Evaluating the metapopulation consequences of ecological traps

    Get PDF
    Ecological traps occur when environmental changes cause maladaptive habitat selection. Despite their relevance to metapopulations, ecological traps have been studied predominantly at local scales. How these local impacts scale up to affect the dynamics of spatially structured metapopulations in heterogeneous landscapes remains unexplored. We propose that assessing the metapopulation consequences of traps depends on a variety of factors that can be grouped into four categories: the probability of encounter, the likelihood of selection, the fitness costs of selection and species-specific vulnerability to these costs. We evaluate six hypotheses using a network-based metapopulation model to explore the relative importance of factors across these categories within a spatial context. Our model suggests (i) traps are most severe when they represent a large proportion of habitats, severely reduce fitness and are highly attractive, and (ii) species with high intrinsic fitness will be most susceptible. We provide the first evidence that (iii) traps may be beneficial for metapopulations in rare instances, and (iv) preferences for natal-like habitats can magnify the effects of traps. Our study provides important insight into the effects of traps at landscape scales, and highlights the need to explicitly consider spatial context to better understand and manage traps within metapopulations
    corecore