12 research outputs found

    A Search for Molecules at Low Frequency with the Murchison Widefield Array

    Get PDF
    I used a wide-field, low-frequency telescope to search for signals from molecules, atoms, and exo-planets, surveying the Galactic Centre and Orion to detect molecules for the first time below 700MHz. In collaboration, I used the same data to set upper limits on the signal strength of extraterrestrial civilisations. Utilising surveys at infrared and radio wavelengths, I found evidence that high-mass stars can form in isolation

    COSMIC: An Ethernet-based Commensal, Multimode Digital Backend on the Karl G. Jansky Very Large Array for the Search for Extraterrestrial Intelligence

    Full text link
    The primary goal of the search for extraterrestrial intelligence (SETI) is to gain an understanding of the prevalence of technologically advanced beings (organic or inorganic) in the Galaxy. One way to approach this is to look for technosignatures: remotely detectable indicators of technology, such as temporal or spectral electromagnetic emissions consistent with an artificial source. With the new Commensal Open-Source Multimode Interferometer Cluster (COSMIC) digital backend on the Karl G. Jansky Very Large Array (VLA), we aim to conduct a search for technosignatures that is significantly more comprehensive, more sensitive, and more efficient than previously attempted. The COSMIC system is currently operational on the VLA, recording data, and designed with the flexibility to provide user-requested modes. This paper describes the hardware system design, the current software pipeline, and plans for future development.Comment: 30 pages, 17 figures. Accepted for publication in A

    Computational Infrared Spectroscopy of 958 Phosphorus-Bearing Molecules

    Get PDF
    Phosphine is now well-established as a biosignature, which has risen to prominence with its recent tentative detection on Venus. To follow up this discovery and related future exoplanet biosignature detections, it is important to spectroscopically detect the presence of phosphorus-bearing atmospheric molecules that could be involved in the chemical networks producing, destroying or reacting with phosphine. We start by enumerating phosphorus-bearing molecules (P-molecules) that could potentially be detected spectroscopically in planetary atmospheres and collecting all available spectral data. Gaseous P-molecules are rare, with speciation information scarce. Very few molecules have high accuracy spectral data from experiment or theory; instead, the best current spectral data was obtained using a high-throughput computational algorithm, RASCALL, relying on functional group theory to efficiently produce approximate spectral data for arbitrary molecules based on their component functional groups. Here, we present a high-throughput approach utilizing established computational quantum chemistry methods (CQC) to produce a database of approximate infrared spectra for 958 P-molecules. These data are of interest for astronomy and astrochemistry (importantly identifying potential ambiguities in molecular assignments), improving RASCALL's underlying data, big data spectral analysis and future machine learning applications. However, this data will probably not be sufficiently accurate for secure experimental detections of specific molecules within complex gaseous mixtures in laboratory or astronomy settings. We chose the strongly performing harmonic ωB97X-D/def2-SVPD model chemistry for all molecules and test the more sophisticated and time-consuming GVPT2 anharmonic model chemistry for 250 smaller molecules. Limitations to our automated approach, particularly for the less robust GVPT2 method, are considered along with pathways to future improvements. Our CQC calculations significantly improve on existing RASCALL data by providing quantitative intensities, new data in the fingerprint region (crucial for molecular identification) and higher frequency regions (overtones, combination bands), and improved data for fundamental transitions based on the specific chemical environment. As the spectroscopy of most P-molecules have never been studied outside RASCALL and this approach, the new data in this paper is the most accurate spectral data available for most P-molecules and represent a significant advance in the understanding of the spectroscopic behavior of these molecules.</jats:p

    The Rapid ASKAP Continuum Survey I: Design and First Results

    Full text link
    The Rapid ASKAP Continuum Survey (RACS) is the first large-area survey to be conducted with the full 36-antenna Australian Square Kilometre Array Pathfinder (ASKAP) telescope. RACS will provide a shallow model of the ASKAP sky that will aid the calibration of future deep ASKAP surveys. RACS will cover the whole sky visible from the ASKAP site in Western Australia, and will cover the full ASKAP band of 700−1800700-1800 MHz. The RACS images are generally deeper than the existing NRAO VLA Sky Survey (NVSS) and Sydney University Molonglo Sky Survey (SUMSS) radio surveys and have better spatial resolution. All RACS survey products will be public, including radio images (with ∼15\sim 15 arcsecond resolution) and catalogues of about three million source components with spectral index and polarisation information. In this paper, we present a description of the RACS survey and the first data release of 903 images covering the sky south of declination +41∘+41^\circ made over a 288 MHz band centred at 887.5 MHz.Comment: 24 pages, 17 figures, 4 tables. For associated data see https://data.csiro.au/collections/domain/casdaObservation/results/PRAS110%20-%20The%20Rapid%20ASKAP%20Continuu

    Forging a path to a better normal for conferences and collaboration

    No full text
    The 2020 COVID-19 pandemic forced a string of cancelled conferences, causing many organizers to shift meetings online, with mixed success. Seizing the opportunity, a group of researchers came together to rethink how the conference experience and collaboration in general can be improved in a more virtual-centric future

    A Search for High-Mass Stars Forming in Isolation using CORNISH and ATLASGAL

    No full text
    Theoretical models of high-mass star formation lie between two extreme scenarios. At one extreme, all the mass comes from an initially gravitationally bound core. At the other extreme, the majority of the mass comes from cluster scale gas, which lies far outside the initial core boundary. One way to unambiguously show high-mass stars can assemble their gas through the former route would be to find a high-mass star forming in isolation. Making use of recently available CORNISH and ATLASGAL Galactic plane survey data, we develop sample selection criteria to try and find such an object. From an initial list of approximately 200 sources, we identify the high-mass star-forming region G13.384 + 0.064 as the most promising candidate. The region contains a strong radio continuum source, that is powered by an early B-type star. The bolometric luminosity, derived from infrared measurements, is consistent with this. However, sub-millimetre continuum emission, measured in ATLASGAL, as well as dense gas tracers, such as HCO+(3–2) and N2H+(3–2) indicate that there is less than ~ 100 M? of material surrounding this star. We conclude that this region is indeed a promising candidate for a high-mass star forming in isolation
    corecore