25 research outputs found

    Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine

    Get PDF
    Remediation of former uranium mining sites represents one of the biggest challenges worldwide that have to be solved in this century. During the last years, the search of alternative strategies involving environmentally sustainable treatments has started. Bioremediation, the use of microorganisms to clean up polluted sites in the environment, is considered one the best alternative. By means of culture-dependent methods, we isolated an indigenous yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former uranium mining site and investigated its interactions with uranium. Our results highlight distinct adaptive mechanisms towards high uranium concentrations on the one hand, and complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays a temperature- and cell viability-dependent process, indicating that metabolic activity could be involved. By STEM (scanning transmission electron microscopy) investigations, we observed that uranium was removed by two mechanisms, active bioaccumulation and inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous species within the flooding water of a former uranium mine, which may play a key role in bioremediation of uranium contaminated sites.This work was supported by the Bundesministerium fĂŒr Bildung und Forschung grand nÂș 02NUK030F (TransAqua). Further support took place by the ERDF-co-financed Grants CGL2012-36505 and 315 CGL2014-59616R, Ministerio de Ciencia e InnovaciĂłn, Spain

    Genome-wide scans identify known and novel regions associated with prolificacy and reproduction traits in a sub-Saharan African indigenous sheep (Ovis aries)

    Get PDF
    Maximizing the number of offspring born per female is a key functionality trait in commercial- and/or subsistence-oriented livestock enterprises. Although the number of offspring born is closely associated with female fertility and reproductive success, the genetic control of these traits remains poorly understood in sub-Saharan Africa livestock. Using selection signature analysis performed on Ovine HD BeadChip data from the prolific Bonga sheep in Ethiopia, 41 candidate regions under selection were identified. The analysis revealed one strong selection signature on a candidate region on chromosome X spanning BMP15, suggesting this to be the primary candidate prolificacy gene in the breed. The analysis also identified several candidate regions spanning genes not reported before in prolific sheep but underlying fertility and reproduction in other species. The genes associated with female reproduction traits included SPOCK1 (age at first oestrus), GPR173 (mediator of ovarian cyclicity), HB-EGF (signalling early pregnancy success) and SMARCAL1 and HMGN3a (regulate gene expression during embryogenesis). The genes involved in male reproduction were FOXJ1 (sperm function and successful fertilization) and NME5 (spermatogenesis). We also observed genes such as PKD2L2, MAGED1 and KDM3B, which have been associated with diverse fertility traits in both sexes of other species. The results confirm the complexity of the genetic mechanisms underlying reproduction while suggesting that prolificacy in the Bonga sheep, and possibly African indigenous sheep is partly under the control of BMP15 while other genes that enhance male and female fertility are essential for reproductive fitness

    Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS: Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS: These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA

    Emergence of Embryo Shape During Cleavage Divisions

    No full text
    International audienceCells are arranged into species-specific patterns during early embryogenesis. Such cell division patterns are important since they often reflect the distribution of localized cortical factors from eggs/fertilized eggs to specific cells as well as the emergence of organismal form. However, it has proven difficult to reveal the mechanisms that underlie the emergence of cell positioning patterns that underlie embryonic shape, likely because a system-level approach is required that integrates cell biological, genetic, developmental and mechanical parameters. The choice of organism to address such questions is also important. Because ascidians display the most extreme form of invariant cleavage pattern amongst the metazoans, we have been analyzing the cell biological mechanisms that underpin three aspects of cell division (unequal cell division (UCD), oriented cell division (OCD), and asynchronous cell cycles) which affect the overall shape of the blastula-stage ascidian embryo composed of 64 cells. In ascidians, UCD creates two small cells at the 16-cell stage that in turn undergo two further successive rounds of UCD. Starting at the 16-cell stage, the cell cycle becomes asynchronous whereby the vegetal half divides before the animal half, thus creating 24, 32, 44 then 64-cell stages. Perturbing either UCD or the alternate cell division rhythm perturbs cell position. By analyzing cell shape, we discovered that cell shape propagates, via cell-cell contact, throughout the embryo following UCD and alternate/asynchronous cell division to create the ascidian-specific invariant cleavage pattern via OCD in the longest length of the apical surface of blastomeres
    corecore