19 research outputs found

    Pyxis: A ground-based demonstrator for formation-flying optical interferometry

    Full text link
    In the past few years, there has been a resurgence in studies towards space-based optical/infrared interferometry, particularly with the vision to use the technique to discover and characterise temperate Earth-like exoplanets around solar analogues. One of the key technological leaps needed to make such a mission feasible is demonstrating that formation flying precision at the level needed for interferometry is possible. Here, we present Pyxis\textit{Pyxis}, a ground-based demonstrator for a future small satellite mission with the aim to demonstrate the precision metrology needed for space-based interferometry. We describe the science potential of such a ground-based instrument, and detail the various subsystems: three six-axis robots, a multi-stage metrology system, an integrated optics beam combiner and the control systems required for the necessary precision and stability. We end by looking towards the next stage of Pyxis\textit{Pyxis}: a collection of small satellites in Earth orbit.Comment: 27 Pages, 14 Figures, submitted to JATI

    An analysis of light pollution at the Thirty Meter Telescope candidate sites

    Get PDF
    Light pollution can create difficulties for astronomers attempting to observe faint objects in the night sky. Light from a local small town can be just as intrusive as light from a large city in the distance. As the population of the Earth increases, light pollution will become more of a problem, even in remote areas. The Thirty Meter Telescope site testing program has measured light pollution at the candidate sites by using all sky cameras; an analysis procedure enhances the all sky camera images to make the determination of the effects of the light pollution. This paper summarizes the light pollution analysis procedure and current results, which are that light pollution is currently unimportant for TMT to select a site for the final telescope location

    Gattini 2010: Cutting Edge Science at the Bottom of the World

    Get PDF
    The high altitude Antarctic sites of Dome A and the South Pole offer intriguing locations for future large scale optical astronomical Observatories. The Gattini project was created to measure the optical sky brightness, large area cloud cover and aurora of the winter-time sky above such high altitude Antarctic sites. The Gattini-DomeA camera was installed on the PLATO instrument module as part of the Chinese-led traverse to the highest point on the Antarctic plateau in January 2008. This single automated wide field camera contains a suite of Bessel photometric filters (B, V, R) and a long-pass red filter for the detection and monitoring of OH emission. We have in hand one complete winter-time dataset (2009) from the camera that was recently returned in April 2010. The Gattini-South Pole UV camera is a wide-field optical camera that in 2011 will measure for the first time the UV properties of the winter-time sky above the South Pole dark sector. This unique dataset will consist of frequent images taken in both broadband U and B filters in addition to high resolution (R similar to 5000) long slit spectroscopy over a narrow bandwidth of the central field. The camera is a proof of concept for the 2m-class Antarctic Cosmic Web Imager telescope, a dedicated experiment to directly detect and map the redshifted lyman alpha fluorescence or Cosmic Web emission we believe possible due to the unique geographical qualities of the site. We present the current status of both projects

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST

    An analysis of light pollution at the Thirty Meter Telescope candidate sites

    Get PDF
    Light pollution can create difficulties for astronomers attempting to observe faint objects in the night sky. Light from a local small town can be just as intrusive as light from a large city in the distance. As the population of the Earth increases, light pollution will become more of a problem, even in remote areas. The Thirty Meter Telescope site testing program has measured light pollution at the candidate sites by using all sky cameras; an analysis procedure enhances the all sky camera images to make the determination of the effects of the light pollution. This paper summarizes the light pollution analysis procedure and current results, which are that light pollution is currently unimportant for TMT to select a site for the final telescope location

    Wide-field dynamic astronomy in the near-infrared with Palomar Gattini-IR and DREAMS

    Get PDF
    There have been a dramatic increase in the number of optical and radio transient surveys due to astronomical transients such as gravitational waves and gamma ray bursts, however, there have been a limited number of wide-field infrared surveys due to narrow field-of-view and high cost of infrared cameras, we present two new wide-field near-infrared fully automated surveyors; Palomar Gattini-IR and the Dynamic REd All-sky Monitoring Survey (DREAMS). Palomar Gattini-IR, a 25 square degree J-band imager that begun science operations at Palomar Observatory, USA in October 2018; we report on survey strategy as well as telescope and observatory operations and will also providing initial science results. DREAMS is a 3.75 square degree wide-field imager that is planned for Siding Spring Observatory, Australia; we report on the current optical and mechanical design and plans to achieve on-sky results in 2020. DREAMS is on-track to be one of the first astronomical telescopes to use an Indium Galium Arsenide (InGaAs) detector and we report initial on-sky testing results for the selected detector package. DREAMS is also well placed to take advantage and provide near-infrared follow-up of the LSST

    Opening the dynamic infrared sky

    Get PDF
    While optical and radio transient surveys have enjoyed a renaissance over the past decade, the dynamic infrared sky remains virtually unexplored from the ground. The infrared is a powerful tool for probing transient events in dusty regions that have high optical extinction, and for detecting the coolest of stars that are bright only at these wavelengths. The fundamental roadblocks in studying the infrared time-domain have been the overwhelmingly bright sky background (250 times brighter than optical) and the narrow field-of-view of infrared cameras (largest is VISTA at 0.6 sq deg). To address these challenges, Palomar Gattini-IR is currently under construction at Palomar Observatory and we propose a further low risk, economical, and agile instrument to be located at Siding Spring Observatory, as well as further instruments which will be located at the high polar regions to take advantage of the low thermal sky emission, particularly in the 2.5 micron region

    GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR

    Get PDF
    The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg2 of the initial skymap over the next two nights, corresponding to 46% integrated probability, ZTF system achieved a depth of ≈21 m AB in g- and r-bands. Palomar Gattini-IR covered 2200 square degrees in J-band to a depth of 15.5 mag, including 32% integrated probability based on the initial skymap. The revised skymap issued the following day reduced these numbers to 21% for the ZTF and 19% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient "alerts" over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical light curves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible

    GROWTH on GW190425: Searching thousands of square degrees to identify an optical or infrared counterpart to a binary neutron star merger with the Zwicky Transient Facility and Palomar Gattini IR

    Get PDF
    The beginning of the third observing run by the network of gravitational-wave detectors has brought the discovery of many compact binary coalescences. Prompted by the detection of the first binary neutron star merger in this run (GW190425 / LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. As it was a single gravitational-wave detector discovery, the initial skymap spanned most of the sky observable from Palomar Observatory, the site of both instruments. Covering 8000 deg2^2 of the inner 99\% of the initial skymap over the next two nights, corresponding to an integrated probability of 46\%, the ZTF system achieved a depth of \approx\,21 mABm_\textrm{AB} in gg- and rr-bands. Palomar Gattini-IR covered a total of 2200 square degrees in JJ-band to a depth of 15.5\,mag, including 32\% of the integrated probability based on the initial sky map. However, the revised skymap issued the following day reduced these numbers to 21\% for the Zwicky Transient Facility and 19\% for Palomar Gattini-IR. Out of the 338,646 ZTF transient "alerts" over the first two nights of observations, we narrowed this list to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod were particularly compelling given that their location, distance, and age were consistent with the gravitational-wave event, and their early optical lightcurves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were photometrically or spectroscopically ruled-out as supernovae. Palomar Gattini-IR identified one fast evolving infrared transient after the merger, PGIR19bn, which was later spectroscopically classified as an M-dwarf flare. [abridged

    Extrasolar Planet Science with the Antarctic Planet Interferometer

    No full text
    The primary limitation to ground based astronomy is the Earth’s atmosphere. The atmosphere above the Antarctic plateau is fundamentally different in many regards compared to the atmosphere at temperate sites. The extreme altitude, cold and low humidity offer a uniquely transparent atmosphere at many wavelengths. Studies at the South Pole have shown additionally that the turbulence properties of the night time polar atmosphere are unlike any mid latitude sites. Despite relatively strong ground layer turbulence, the lack of high altitude turbulence combined with low wind speeds presents favorable conditions for interferometry. The unique properties of the polar atmosphere can be exploited for Extrasolar Planet studies with differential astrometry, differential phase and nulling interferometers. This paper combines the available data on the properties of the atmosphere at the South Pole and other Antarctic plateau sites for Extrasolar Planet science with interferometry
    corecore