47 research outputs found

    Argon 1s(-2) Auger hypersatellites

    Get PDF
    The 1s(-2) Auger hypersatellite spectrum of argon is studied experimentally and theoretically. In total, three transitions to the final states 1s(-1)2p(-2)(S-2(e),D-2(e)) and 1s(-1)2s(-1)(S-1)2p(-1)(P-2(o)) are experimentally observed. The lifetime broadening of the 1s(-2) -> 1s(-1)2p(-2)(S-2(e),D-2(e)) states is determined to be 2.1(4) eV. For the used photon energy of h nu = 7500 eV a KK/K ionisation ratio of 2.5(3) x 10(-4) is derived. Generally, a good agreement between the experimental and present theoretical energy positions, linewidths, and intensities is obtained

    Electron spectroscopy and dynamics of HBr around the Br 1s-1 threshold

    Get PDF
    A comprehensive electron spectroscopic study combined with partial electron yield measurements around the Br 1s ionization threshold of HBr at approximately equal to 13.482 keV is reported. In detail, the Br 1s(-1) X-ray absorption spectrum, the 1s(-1) photoelectron spectrum as well as the normal and resonant KLL Auger spectra are presented. Moreover, the L-shell Auger spectra measured with photon energies below and above the Br 1s(-1) ionization energy as well as on top of the Br 1s(-1)sigma* resonance are shown. The latter two Auger spectra represent the second step of the decay cascade subsequent to producing a Br 1s(-1) core hole. The measurements provide information on the electron and nuclear dynamics of deep core-excited states of HBr on the femtosecond timescale. From the different spectra the lifetime broadening of the Br 1s(-1) single core-hole state as well as of the Br(2s(-2),2s(-1)2p(-1),2p(-2)) double core-hole states are extracted and discussed. The slope of the strongly dissociative HBr 2p(-2)sigma* potential energy curve is found to be about -13.60 eV angstrom(-1). The interpretation of the experimental data, and in particular the assignment of the spectral features in the KLL and L-shell Auger spectra, is supported by relativistic calculations for HBr molecule and atomic Br

    Generalization of the post-collision interaction effect from gas-phase to solid-state systems demonstrated in thiophene and its polymers

    Get PDF
    We demonstrate experimentally and theoretically the presence of the post-collision interaction (PCI) effect in sulfur KL2,3L2,3 Auger electron spectra measured in the gas-phase thiophene and in solid-state organic polymers: polythiophene (PT) and poly(3-hexylthiophene-2,5-diyl), commonly known as P3HT. PCI manifests itself through a distortion and a blueshift of the normal Auger S KL2,3L2,3 spectrum when S 1s ionization occurs close to the ionization threshold. Our investigation shows that the PCI-induced shift of the Auger spectra is stronger in the solid-state polymers than in the gas-phase organic molecule. Theoretical modeling within the framework of the eikonal approximation provides good agreement with the experimental observations. In a solid medium, two effects influence the interaction between the photoelectron and the Auger electron. In detail, stronger PCI in the polymers is attributed to the photoelectron scattering in the solid, which overcompensates the polarization screening of electron charges which causes a reduction of the interaction. Our paper demonstrates the general nature of the PCI effect occurring in different media

    X-ray induced ultrafast charge transfer in thiophene-based conjugated polymers controlled by core-hole clock spectroscopy

    Get PDF
    We explore ultrafast charge transfer (CT) resonantly induced by hard X-ray radiation in organic thiophene-based polymers at the sulfur K-edge. A combination of core-hole clock spectroscopy with real-time propagation time-dependent density functional theory simulations gives an insight into the electron dynamics underlying the CT process. Our method provides control over CT by a selective excitation of a specific resonance in the sulfur atom with monochromatic X-ray radiation. Our combined experimental and theoretical investigation establishes that the dominant mechanism of CT in polymer powders and films consists of electron delocalisation along the polymer chain occurring on the low-femtosecond time scale

    Hard-X-Ray-Induced Multistep Ultrafast Dissociation

    Get PDF
    Creation of deep core holes with very short (τ≤1  fs) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few- femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1s→σ∗ excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon

    A von Hamos spectrometer based on highly annealed pyrolytic graphite crystal in tender x-ray domain

    Get PDF
    We have built an x-ray spectrometer in a von Hamos configuration based on a highly annealed pyrolytic graphite crystal. The spectrometer is designed to measure x-ray emission in the range of 2–5 keV. A spectral resolution E/ΔE of 4000 was achieved by recording the elastic peak of photons issued from the GALAXIES beamline at the SOLEIL synchrotron radiation facility

    Dynamics of core-excited ammonia: disentangling fragmentation pathways by complementary spectroscopic methods

    Get PDF
    Fragmentation dynamics of core-excited isolated ammonia molecules is studied by two different and complementary experimental methods, high-resolution resonant Auger spectroscopy and electron energy-selected Auger electron–photoion coincidence spectroscopy (AEPICO). The combined use of these two techniques allows obtaining information on different dissociation patterns, in particular fragmentation before relaxation, often called ultrafast dissociation (UFD), and fragmentation after relaxation. The resonant Auger spectra contain the spectral signature of both molecular and fragment final states, and therefore can provide information on all events occurring during the core-hole lifetime, in particular fragmentation before relaxation. Coincidence measurements allow correlating Auger electrons with ionic fragments from the same molecule, and relating the ionic fragments to specific Auger final electronic states, and yield additional information on which final states are dissociative, and which ionic fragments can be produced in timescales either corresponding to the core-hole lifetime or longer. Furthermore, we show that by the combined use of two complementary experimental techniques we are able to identify more electronic states of the NH2+ fragment with respect to the single one already reported in the literature

    Argon KLL Auger spectrum: Initial states, core-hole lifetimes, shake, and knock-down processes

    Get PDF
    State-of-the-art argon KLL Auger spectra measured using photon energies of hν=3216 and 3400 eV are presented along with an Ar [1s] photoelectron spectrum (square brackets indicate holes in the respective orbital). The two different photon energies used for measuring the Auger spectra allow distinguishing between the shake transitions during the Auger decay and the Auger transitions of the photoelectron satellites. A complete assignment of satellite transitions is provided, partially based on configuration-interaction calculations. In addition, Ar [1s3(s,p)]n′l′→[2p2(1D2)] transitions are observed, which can be explained by knock-down transitions leading to a direct exchange of angular momentum between the excited electron and the Auger electron. The lifetime broadenings of the Ar [2s] single-core-hole state and the [2s2] and [2s2p] double-core-hole states are also determined, confirming previously observed trends for double-core-hole states

    Photochemical Ring-Opening Reaction of 1,3-Cyclohexadiene: Identifying the True Reactive State

    Get PDF
    The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation–deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction

    Structure and Dynamics of Core-Excited Species

    No full text
    In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies. We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl2 and C1s−1π*1 states of allene molecules. The combined use of high-resolution spectroscopy with ab initio calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl2 which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N2O. We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH3X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism
    corecore