464 research outputs found

    Millennials and Masculinity: A Shifting Tide of Gender Typing of ICT?

    Get PDF
    The question of a possible shift in Millennials’ perceptions about gender and ICT resulted from a survey of gender stereotyping of ICT skills among college age Millennials in the USA. The results identify three clusters of skills: masculine (includes computer programming, database and networking); feminine (includes communication, working in teams, ethics, global and cultural awareness, and openness to new experiences) and gender neutral (includes initiative, ability to work under pressure, critical thinking and problem solving). These findings suggest a possible shift of gender stereotypes about ICT skills among Millennials. Nevertheless, the gender stereotyping of the more technical skills in the IT profession as masculine argues for continued interventions to alter these perceptions and expand the gender neutral space in order to broaden the participation of women in the IT field

    Phenotype and Genetics of Progressive Sensorineural Hearing Loss (Snhl1) in the LXS Set of Recombinant Inbred Strains of Mice

    Get PDF
    Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population. It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we ascertained hearing function in the inbred long sleep (ILS) and inbred short sleep (ISS) strains. Using auditory-evoked brain stem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements, we found that ISS mice developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly significant logarithm of odds (LOD) score of 15.8. The 2-LOD confidence interval spans ∼4 Megabases located at position 54–60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1), accounts for approximately 82% of the phenotypic variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and genetic heterogeneity of progressive hearing loss in common mouse strains

    Signaling via interleukin-4, receptor alpha chain is required for successful vaccination against schistosomiasis in BALB/c mice

    Get PDF
    Radiation-attenuated (RA) schistosome larvae are potent stimulators of innate immune responses at the skin site of exposure (pinna) that are likely to be important factors in the development of Th1-mediated protective immunity. In addition to causing an influx of neutrophils, macrophages, and dendritic cells (DCs) into the dermis, RA larvae induced a cascade of chemokine and cytokine secretion following in vitro culture of pinna biopsy samples. While macrophage inflammatory protein 1 and interleukin-1 (IL-1) were produced transiently within the first few days, the Th1-promoting cytokines IL-12 and IL-18 were secreted at high levels until at least day 14. Assay of C3H/HeJ mice confirmed that IL-12 secretion was not due to lipopolysaccharide contaminants binding Toll-like receptor 4. Significantly, IL-12 p40 secretion was sustained in pinnae from vaccinated mice but not in those from nonprotected infected mice. In contrast, IL-10 was produced from both vaccinated and infected mice. This cytokine regulates IL-12-associated dermal inflammation, since in vaccinated IL-10/ mice, pinna thickness was greatly increased concurrent with elevated levels of IL-12 p40. A significant number of IL-12 p40 cells were detected as emigrants from in vitro-cultured pinnae, and most were within a population of rare large granular cells that were Ia, consistent with their being antigen-presenting cells. Labeling of IL-12 cells for CD11c, CD205, CD8, CD11b, and F4/80 indicated that the majority were myeloid DCs, although a proportion were CD11c F4/80, suggesting that macrophages were an additional source of IL-12 in the skin

    Seismic Reliability Assessment of Aging Highway Bridge Networks with Field Instrumentation Data and Correlated Failures. II: Application

    Get PDF
    The Bridge Reliability in Networks (BRAN) methodology introduced in the companion paper is applied to evaluate the reliability of part of the highway bridge network in South Carolina, USA, under a selected seismic scenario. The case study demonstrates Bayesian updating of deterioration parameters across bridges after spatial interpolation of data acquired from limited instrumented bridges. The updated deterioration parameters inform aging bridge seismic fragility curves through multidimensional integration of parameterized fragility models, which are utilized to derive bridge failure probabilities. The paper establishes the correlation structure among bridge failures from three information sources to generate realizations of bridge failures for network level reliability assessment by Monte Carlo analysis. Positive correlations improve the reliability of the case study network, also predicted from the network topology. The benefits of the BRAN methodology are highlighted in its applicability to large networks while addressing some of the existing gaps in bridge network reliability studies

    Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human

    Get PDF
    Sensorineural hearing loss affects the quality of life and communication of millions of people, but the underlying molecular mechanisms remain elusive. Here, we identify mutations in Gipc3 underlying progressive sensorineural hearing loss (age-related hearing loss 5, ahl5) and audiogenic seizures (juvenile audiogenic monogenic seizure 1, jams1) in mice and autosomal recessive deafness DFNB15 and DFNB95 in humans. Gipc3 localizes to inner ear sensory hair cells and spiral ganglion. A missense mutation in the PDZ domain has an attenuating effect on mechanotransduction and the acquisition of mature inner hair cell potassium currents. Magnitude and temporal progression of wave I amplitude of afferent neurons correlate with susceptibility and resistance to audiogenic seizures. The Gipc3343A allele disrupts the structure of the stereocilia bundle and affects long-term function of auditory hair cells and spiral ganglion neurons. Our study suggests a pivotal role of Gipc3 in acoustic signal acquisition and propagation in cochlear hair cells

    The Novel Mouse Mutation Oblivion Inactivates the PMCA2 Pump and Causes Progressive Hearing Loss

    Get PDF
    Progressive hearing loss is common in the human population, but we have few clues to the molecular basis. Mouse mutants with progressive hearing loss offer valuable insights, and ENU (N-ethyl-N-nitrosourea) mutagenesis is a useful way of generating models. We have characterised a new ENU-induced mouse mutant, Oblivion (allele symbol Obl), showing semi-dominant inheritance of hearing impairment. Obl/+ mutants showed increasing hearing impairment from post-natal day (P)20 to P90, and loss of auditory function was followed by a corresponding base to apex progression of hair cell degeneration. Obl/Obl mutants were small, showed severe vestibular dysfunction by 2 weeks of age, and were completely deaf from birth; sensory hair cells were completely degenerate in the basal turn of the cochlea, although hair cells appeared normal in the apex. We mapped the mutation to Chromosome 6. Mutation analysis of Atp2b2 showed a missense mutation (2630C→T) in exon 15, causing a serine to phenylalanine substitution (S877F) in transmembrane domain 6 of the PMCA2 pump, the resident Ca2+ pump of hair cell stereocilia. Transmembrane domain mutations in these pumps generally are believed to be incompatible with normal targeting of the protein to the plasma membrane. However, analyses of hair cells in cultured utricular maculae of Obl/Obl mice and of the mutant Obl pump in model cells showed that the protein was correctly targeted to the plasma membrane. Biochemical and biophysical characterisation showed that the pump had lost a significant portion of its non-stimulated Ca2+ exporting ability. These findings can explain the progressive loss of auditory function, and indicate the limits in our ability to predict mechanism from sequence alone
    • …
    corecore