662 research outputs found

    New members of the neurexin superfamily: multiple rodent homologues of the human CASPR5 gene

    Get PDF
    Proteins of the Caspr family are involved in cell contacts and communication in the nervous system. We identified and, by in silico reconstruction, compiled three orthologues of the human CASPR5 gene from the mouse genome, four from the rat genome, and one each from the chimpanzee, dog, opossum, and chicken genomes. Obviously, Caspr5 gene duplications have taken place during evolution of the rodent lineage. In the rat, the four paralogues are located in one chromosome arm, Chr 13p. In the mouse, however, the three Caspr5 genes are located in two chromosomes, Chr 1 and Chr 17. RT-PCR shows that all three mouse paralogues are being expressed. Common expression is found in brain tissue but different expression patterns are seen in other organs during fetal development and in the adult stage. Tissue specificity of expression has diverged during evolution of this young rodent gene family

    Do exons code for structural or functional units in proteins?

    Get PDF
    In considering the origin and evolution of proteins, the possibility that proteins evolved from exons coding for specific structure-function modules is attractive for its economy and simplicity but is not systematically supported by the available data. However, the number of correspondences between exons and units of protein structure-function that have so far been identified appears to be greater than expected by chance alone. The available data also show (i) that exons are fairly limited in size but are large enough to specify structure-function modules in proteins; (ii) that the position of introns for homologous domains in the same gene is reasonably stable, but there is also evidence for mechanisms that alter the position or existence of introns; and (iii) that it is possible that the observed relationship of exons to protein structure represents a degenerate state of an ancestral correspondence between exons and structure-function modules in proteins

    Karyotypes versus Genomes: The Nymphalid Butterflies Melitaea cinxia, Danaus plexippus, and D. chrysippus

    Get PDF
    his is the author accepted manuscript. The final version is available from Karger via the DOI in this recordThe number of sequenced lepidopteran genomes is increasing rapidly. However, the corresponding assemblies rarely represent whole chromosomes and generally also lack the highly repetitive W sex chromosome. Knowledge of the karyotypes can facilitate genome assembly and further our understanding of sex chromosome evolution in Lepidoptera. Here, we describe the karyotypes of the Glanville fritillary Melitaea cinxia (n = 31), the monarch Danaus plexippus (n = 30), and the African queen D. chrysippus (2n = 60 or 59, depending on the source population). We show by FISH that the telomeres are of the (TTAGG) n type, as found in most insects. M. cinxia and D. plexippus have “conventional” W chromosomes which are heterochromatic in meiotic and somatic cells. In D. chrysippus, the W is inconspicuous. Neither telomeres nor W chromosomes are represented in the published genomes of M. cinxia and D. plexippus. Representation analysis in sequenced female and male D. chrysippus genomes detected an evolutionarily old autosome-Z chromosome fusion in Danaus. Conserved synteny of whole chromosomes, so called “macro synteny”, in Lepidoptera permitted us to identify the chromosomes involved in this fusion. An additional and more recent sex chromosome fusion was found in D. chrysippus by karyotype analysis and classical genetics. In a hybrid population between 2 subspecies, D. c. chrysippus and D. c. dorippus, the W chromosome was fused to an autosome that carries a wing colour locus. Thus, cytogenetics and the present state of genome data complement one another to reveal the evolutionary history of the species

    The Chemistry of the Reaction Determines the Invariant Amino Acids during the Evolution and Divergence of Orotidine 5â€Č-Monophosphate Decarboxylase

    Get PDF
    Orotidine 5'-phosphate (OMP) decarboxylase has the largest rate enhancement for any known enzyme. For an average protein of 270 amino acids from more than 80 species, only 8 amino acids are invariant, and 7 of these correspond to ligand-binding residues in the crystal structures of the enzyme from four species. It appears that the chemistry required for catalysis determines the invariant residues for this enzyme structure. A motif of three invariant amino acids at the catalytic site (DXKXXD) is also found in the enzyme hexulose-phosphate synthase. Although the core of OMP decarboxylase is conserved, it has undergone a variety of changes in subunit size or fusion to other protein domains, such as orotate phosphoribosyltransferase, during evolution in different kingdoms. The phylogeny of OMP decarboxylase shows a unique subgroup distinct from the three kingdoms of life. The enzyme subunit size almost doubles from Archaea (average mass of 24.5 kDa) to certain fungi (average mass of 41.7 kDa). These observed changes in subunit size are produced by insertions at 12 sites, largely in loops and on the exterior of the core protein. The consensus for all sequences has a minimal size of <20 kDa

    Purine nucleoside phosphorylase. Allosteric regulation of a dissociating enzyme.

    Get PDF
    Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is a trimeric enzyme that readily dissociates to the monomer. Dilution of enzyme from 20 to 0.02 microgram of protein/ml is accompanied by a greater than 50-fold increase in the specific activity (vtrimer = 0.23 nmol/min/microgram; vmonomer = 12.5 nmol/min/micrograms). Gel permeation chromatography in the presence of the substrate phosphate shows the enzyme to be predominantly trimeric at 50 mM Pi and predominantly monomeric at 100 mM Pi, when experiments are done at 24 degrees C. No significant dissociation was observed at 4 degrees C with Pi or at either temperature with the substrate inosine. As measured by dissociation, the L0.5 for Pi is 88 mM and thus significantly higher than the Km of 3.1 mM for Pi. Enzyme activity as a function of phosphate concentration showed negative cooperativity, but the conformational response measured by the change in native Mr during dissociation showed positive cooperatively toward Pi. These data support a model for two separate phosphate binding sites on the enzyme. The activity and stability of purine nucleoside phosphorylase are quite sensitive to the concentration of the enzyme as well as appropriate substrates. Although the monomer is interpreted as being a fully active form of the enzyme, the data in general are most consistent with the enzyme functioning in vivo as a regulated trimer

    Bkm sequences from the human X chromosome contain large clusters of GATA/GACA repeats

    Full text link
    In order to determine whether the regional localizations of Bkm repeats detected on the human X chromosome consisted of typical GATA/GACA repeats, clones were isolated, mapped, and sequenced. Nine Bkm-hybridizing clones from Kunkel's fluorescent-activated, cell-sorted X-chromosome library were all unique. Five were mapped in detail with restriction enzymes and the Bkm-hybridizing segments were localized. Confirmation of X chromosomal homology was obtained for 2 of the clones and Bkm segments from these 2 clones were sequenced. Seventeen contiguous GATA repeats were found in each clone and the overall repeat arrangement showed relatively few differences from previously sequenced Bkm sequences. These are the first sequences of human Bkm repeats. The results, when compared with previously published results, suggest that there may be significant differences between the organization of Bkm repeats on the human X and on the human Y chromosome.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66402/1/j.1469-1809.1988.tb01094.x.pd

    CO2 Targets, Trajectories and Trends for International Shipping

    Get PDF
    The Shipping in Changing Climates (SCC) project connects the latest climate change science with knowledge, understanding and models of the shipping sector in a whole systems approach. It seeks to explore the potential to cut CO2 through the use of technical and operational changes in shipping and to understand how the sector might transition to a more resilient and low-carbon future; it also seeks to explore different climate change scenarios and related food and fuel security issues to gain an understanding of the direct and indirect impacts of climate change on the shipping sector. These scenarios can be used to build evidence and understanding around the range of potential future directions that the shipping industry may take. The RCUK Energy funded project brings together researchers from UCL (Energy Institute, Mechanical Engineering and Laws), Manchester, Southampton, Newcastle and Strathclyde, in close collaboration with a core industry stakeholder group of Shell, Lloyd’s Register, Rolls Royce, BMT and Maritime Strategies International, but drawing on the expertise and connections of over 35 companies and organisations worldwide. This paper is non-peer- reviewed and represents the collective opinions of the authors and should not be assumed to represent the views of all the researchers across the project or the project’s industry partners and their organisations

    Uridine kinase from Ehrlich ascites carcinoma. Purification and properties of homogeneous enzyme.

    Get PDF
    Uridine kinase from Ehrlich ascites tumor cells has been purified about 60,000-fold to apparent homogeneity and with an overall recovery of about 40%. This purification was achieved using phosphocellulose and adenosine 5'-triphosphate-agarose affinity chromatography. The subunit molecular mass as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 31,000 daltons. With two-dimensional electrophoresis, only one spot was observed, indicating the absence of isoenzymes. Multiple peaks of activity are routinely observed on ion exchange chromatography or gel filtration, for both crude preparations or homogeneous uridine kinase, in agreement with our earlier results that this enzyme exists as multiple interconvertible oligomeric forms (Payne, R. C., and Traut, T. W. (1982) J. Biol. Chem. 257, 12485-12488). The purified enzyme has a specific activity of 283 mumol/min/mg of protein at 22 degrees C. Initial velocity studies using uridine and ATP are consistent with a sequential mechanism. Km values for uridine, cytidine, and ATP are 40, 57, and 450 microM, respectively. CTP and UTP are competitive inhibitors with respect to ATP, with Ki values for CTP and UTP of 10 and 61 microM, respectively. The enzyme was active with several nucleoside analogs, the Km values being 69 microM (5-fluorouridine), 200 microM (3-deazauridine), and 340 microM (6-azauridine). The pure enzyme is very sensitive to freezing, but can be maintained at O degrees C for 8 weeks with only 20% loss of activity. For long-term storage, enzyme in 50% glycerol can be maintained at -20 degrees C for many months with no detectable loss of activity

    A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation

    Get PDF
    PublishedJournal Article© 2016, Royal Society of London. All rights reserved.Sexually antagonistic selection can drive both the evolution of sex chromosomes and speciation itself. The tropical butterfly the African Queen, Danaus chrysippus, shows two such sexually antagonistic phenotypes, the first being sex-linked colour pattern, the second, susceptibility to a male-killing, maternally inherited mollicute, Spiroplasma ixodeti, which causes approximately 100% mortality in male eggs and first instar larvae. Importantly, this mortality is not affected by the infection status of the male parent and the horizontal transmission of Spiroplasma is unknown. In East Africa, male-killing of the Queen is prevalent in a narrow hybrid zone centred on Nairobi. This hybrid zone separates otherwise allopatric subspecies with different colour patterns. Here we show that a neo-W chromosome, a fusion between the W (female) chromosome and an autosome that controls both colour pattern and malekilling, links the two phenotypes thereby driving speciation across the hybrid zone. Studies of the population genetics of the neo-W around Nairobi showthat the interaction between colour pattern and male-killer susceptibility restricts gene flow between two subspecies of D. chrysippus. Our results demonstrate how a complex interplay between sex, colour pattern, malekilling, and a neo-W chromosome, has set up a genetic ‘sink’ that keeps the two subspecies apart. The association between the neo-W and male-killing thus provides a ‘smoking gun’ for an ongoing speciation process.Matt McClements (Blink Studios Ltd) designed the figures, Bernard Rono assisted with fieldwork, and Samuel Katoi provided specimens from Watamu. Fieldwork at Silole Sanctuary (Kitengela) was sanctioned by Nani Croze, Eric Krystall, John Keen, and Mark van Rampelberg. Simon Martin scrutinized the first draft of the manuscript and made valuable suggestions for its improvement. Spiroplasma screening was carried out at icipe. D.A.S.S. thanks the Linnean Society of London and the Outreach Fund of the Royal Entomological Society of London for funding. I.J.G., D.A.S.S., W.T., and K.S. are Research Affiliates of the National Museums of Kenya

    Cytogenetic analysis of three species of Pseudacteon (Diptera, Phoridae) parasitoids of the fire ants using standard and molecular techniques

    Get PDF
    Pseudacteon flies, parasitoids of worker ants, are being intensively studied as potentially effective agents in the biological control of the invasive pest fire ant genus Solenopsis (Hymenoptera: Formicidae). This is the first attempt to describe the karyotype of P. curvatus Borgmeier, P. nocens Borgmeier and P. tricuspis Borgmeier. The three species possess 2n = 6; chromosomes I and II were metacentric in the three species, but chromosome pair III was subtelocentric in P. curvatus and P. tricuspis, and telocentric in P. nocens. All three species possess a C positive band in chromosome II, lack C positive heterochromatin on chromosome I, and are mostly differentiated with respect to chromosome III. P. curvatus and P. tricuspis possess a C positive band, but at different locations, whereas this band is absent in P. nocens. Heterochromatic bands are neither AT nor GC rich as revealed by fluorescent banding. In situ hybridization with an 18S rDNA probe revealed a signal on chromosome II in a similar location to the C positive band in the three species. The apparent lack of morphologically distinct sex chromosomes is consistent with proposals of environmental sex determination in the genus. Small differences detected in chromosome length and morphology suggests that chromosomes have been highly conserved during the evolutionary radiation of Pseudacteon. Possible mechanisms of karyotype evolution in the three species are suggested
    • 

    corecore