49 research outputs found

    The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 Knee Score and Atlas

    Get PDF
    Objective Since the first introduction of the MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) score, significant progress has been made with regard to surgical treatment options for cartilage defects, as well as magnetic resonance imaging (MRI) of such defects. Thus, the aim of this study was to introduce the MOCART 2.0 knee score — an incremental update on the original MOCART score — that incorporates this progression. Materials and Methods The volume of cartilage defect filling is now assessed in 25% increments, with hypertrophic filling of up to 150% receiving the same scoring as complete repair. Integration now assesses only the integration to neighboring native cartilage, and the severity of surface irregularities is assessed in reference to cartilage repair length rather than depth. The signal intensity of the repair tissue differentiates normal signal, minor abnormal, or severely abnormal signal alterations. The assessment of the variables "subchondral lamina," "adhesions," and "synovitis" was removed and the points were reallocated to the new variable "bony defect or bony overgrowth." The variable "subchondral bone" was renamed to "subchondral changes" and assesses minor and severe edema-like marrow signal, as well as subchondral cysts or osteonecrosis-like signal. Overall, a MOCART 2.0 knee score ranging from 0 to 100 points may be reached. Four independent readers (two expert readers and two radiology residents with limited experience) assessed the 3 T MRI examinations of 24 patients, who had undergone cartilage repair of a femoral cartilage defect using the new MOCART 2.0 knee score. One of the expert readers and both inexperienced readers performed two readings, separated by a four-week interval. For the inexperienced readers, the first reading was based on the evaluation sheet only. For the second reading, a newly introduced atlas was used as an additional reference. Intrarater and interrater reliability was assessed using intraclass correlation coefficients (ICCs) and weighted kappa statistics. ICCs were interpreted according to Koo and Li; weighted kappa statistics were interpreted according to the criteria of Landis and Koch. Results The overall intrarater (ICC = 0.88, P < 0.001) as well as the interrater (ICC = 0.84, P < 0.001) reliability of the expert readers was almost perfect. Based on the evaluation sheet of the MOCART 2.0 knee score, the overall interrater reliability of the inexperienced readers was poor (ICC = 0.34, P < 0.019) and improved to moderate (ICC = 0.59, P = 0.001) with the use of the atlas. Conclusions The MOCART 2.0 knee score was updated to account for changes in the past decade and demonstrates almost perfect interrater and intrarater reliability in expert readers. In inexperienced readers, use of the atlas may improve interrater reliability and, thus, increase the comparability of results across studies

    Deep blue polymer light emitting diodes based on easy to synthesize, non-aggregating polypyrene

    Get PDF
    Thorough analyses of the photo- and devicephysics of poly-7-tert-butyl-1,3-pyrenylene (PPyr) by the means of absorption and photoluminescence emission, time resolved photoluminescence and photoinduced absorption spectroscopy as well as organic light emitting devices (OLEDs) are presented in this contribution. Thereby we find that this novel class of polymers shows deep blue light emission as required for OLEDs and does not exhibit excimer or aggregate emission when processed from solvents with low polarity. Moreover the decay dynamics of the compound is found to be comparable to that of well blue emitting conjugated polymers such as polyfluorene. OLEDs built in an improved device assembly show stable bright blue emission for the PPyr homopolymer and further a considerable efficiency enhancement can be demonstrated using a triphenylamine(TPA)/pyrene copolymer. (C) 2011 Optical Society of Americ

    European Spine Journal / Does T2 mapping of the posterior annulus fibrosus indicate the presence of lumbar intervertebral disc herniation? : A 3.0 Tesla magnetic resonance study

    No full text
    Purpose Indicating lumbar disc herniation via magnetic resonance imaging (MRI) T2 mapping in the posterior annulus fibrosus (AF). Methods Sagittal T2 maps of 313 lumbar discs of 64 patients with low back pain were acquired at 3.0 Tesla (3T). The discs were rated according to disc herniation and bulging. Region of interest (ROI) analysis was performed on median, sagittal T2 maps. T2 values of the AF, in the most posterior 10% (PAF-10) and 20% of the disc (PAF-20), were compared. Results A significant increase in the T2 values of discs with herniations affecting the imaged area, compared to bulging discs and discs with lateral herniation, was shown in the PAF-10, where no association to the NP was apparent. The PAF-20 exhibited a moderate correlation to the nucleus pulposus (NP). Conclusions High T2 values in the PAF-10 suggest the presence of disc herniation (DH). The results indicate that T2 values in the PAF-20 correspond more to changes in the NP.(VLID)352441

    Two-Year Results of Injectable Matrix-Associated Autologous Chondrocyte Transplantation in the Hip Joint: Significant Improvement in Clinical and Radiological Assessment

    Get PDF
    Purpose: Articular cartilage defects are a prevalent consequence of femoroacetabular impingement (FAI) in young active patients. In accordance with current guidelines, large chondral lesions of the hip joint over 2 cm2 are recommended to be treated with matrix-associated, autologous chondrocyte transplantation (MACT); however, the conditions in the hip joint are challenging for membrane-based MACT options. Injectable MACT products can solve this problem. The purpose of the trial was to assess clinical and radiological outcomes 24 months after injectable MACT of focal chondral lesions caused by FAI. Methods: We present data of 21 patients with focal cartilage defects of the hip [3.0 ± 1.4 cm2 (mean ± SD)], ICRS Grade III and IV caused by CAM-type impingement, who underwent arthroscopic MACT (NOVOCART® Inject) and FAI correction. The outcome was evaluated with the patient-reported outcome instruments iHOT33 and EQ-5D-5L (index value and VAS), whilst graft morphology was assessed based on the MOCART score over a follow-up period of 24 months. Results: The iHOT33 score increased significantly from 52.9 ± 21.1 (mean ± SD) preoperatively to 85.8 ± 14.8 (mean ± SD; p < 0.0001) 24 months postoperatively. The EQ-5D-5L index value (p = 0.0004) and EQ-5D VAS (p = 0.0006) showed a statistically significant improvement as well. MRI evaluation after 24 months showed successful integration of the implant in all patients with a complete defect filling in 11 of 14 patients. Conclusions: Injectable MACT for the treatment of full-thickness chondral lesions of the hip joint due to FAI in combination with FAI correction improved symptoms, function, and quality of life in the treated cohort. Alongside the treatment of the underlying pathology by the FAI correction, the developed cartilage defect can be successfully repaired by MACT, which is of considerable clinical relevance

    Two-Year Results of Injectable Matrix-Associated Autologous Chondrocyte Transplantation in the Hip Joint: Significant Improvement in Clinical and Radiological Assessment

    Get PDF
    Purpose: Articular cartilage defects are a prevalent consequence of femoroacetabular impingement (FAI) in young active patients. In accordance with current guidelines, large chondral lesions of the hip joint over 2 cm2 are recommended to be treated with matrix-associated, autologous chondrocyte transplantation (MACT); however, the conditions in the hip joint are challenging for membrane-based MACT options. Injectable MACT products can solve this problem. The purpose of the trial was to assess clinical and radiological outcomes 24 months after injectable MACT of focal chondral lesions caused by FAI. Methods: We present data of 21 patients with focal cartilage defects of the hip [3.0 ± 1.4 cm2 (mean ± SD)], ICRS Grade III and IV caused by CAM-type impingement, who underwent arthroscopic MACT (NOVOCART® Inject) and FAI correction. The outcome was evaluated with the patient-reported outcome instruments iHOT33 and EQ-5D-5L (index value and VAS), whilst graft morphology was assessed based on the MOCART score over a follow-up period of 24 months. Results: The iHOT33 score increased significantly from 52.9 ± 21.1 (mean ± SD) preoperatively to 85.8 ± 14.8 (mean ± SD; p < 0.0001) 24 months postoperatively. The EQ-5D-5L index value (p = 0.0004) and EQ-5D VAS (p = 0.0006) showed a statistically significant improvement as well. MRI evaluation after 24 months showed successful integration of the implant in all patients with a complete defect filling in 11 of 14 patients. Conclusions: Injectable MACT for the treatment of full-thickness chondral lesions of the hip joint due to FAI in combination with FAI correction improved symptoms, function, and quality of life in the treated cohort. Alongside the treatment of the underlying pathology by the FAI correction, the developed cartilage defect can be successfully repaired by MACT, which is of considerable clinical relevance

    dGEMRIC and subsequent T1 mapping of the hip at 1.5 Tesla: normative data on zonal and radial distribution in asymptomatic volunteers

    No full text
    To characterize the zonal distribution of three-dimensional (3D) T1 mapping in the hip joint of asymptomatic adult volunteers
    corecore