1,377 research outputs found

    Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    Get PDF
    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation

    Phosphatase activity and organic phosphorus turnover on a high Arctic glacier

    Get PDF
    Arctic glacier surfaces harbour abundant microbial communities consisting mainly of heterotrophic and photoautotrophic bacteria. The microbes must cope with low concentrations of nutrients and with the fact that both the dissolved and debris-bound nutrient pools are dominated by organic phases. Here we provide evidence that phosphorus (P) is deficient in the supraglacial environment on a Svalbard glacier, we quantify the enzymatic activity of phosphatases in the system and we estimate the contribution of the microbes to the cycling of the dominant organic P in the supraglacial environment. Incubation of cryoconite debris revealed significant phosphatase activity in the samples (19–67 nmol MUP g<sup>−1</sup> h<sup>−1</sup>). It was inhibited by inorganic P during incubations and had its optimum at around 30°C. The phosphatase activity measured at near-in situ temperature and substrate concentration suggests that the available dissolved organic P can be turned over by microbes within ~3–11 h on the glacier surface. By contrast, the amount of potentially bioavailable debris-bound organic P is sufficient for a whole ablation season. However, it is apparent that some of this potentially bioavailable debris-bound P is not accessible to the microbes

    A comparison of the Bravyi-Kitaev and Jordan-Wigner transformations for the quantum simulation of quantum chemistry

    Get PDF
    The ability to perform classically intractable electronic structure calculations is often cited as one of the principal applications of quantum computing. A great deal of theoretical algorithmic development has been performed in support of this goal. Most techniques require a scheme for mapping electronic states and operations to states of and operations upon qubits. The two most commonly used techniques for this are the Jordan-Wigner transformation and the Bravyi-Kitaev transformation. However, comparisons of these schemes have previously been limited to individual small molecules. In this paper we discuss resource implications for the use of the Bravyi-Kitaev mapping scheme, specifically with regard to the number of quantum gates required for simulation. We consider both small systems which may be simulatable on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular systems to demonstrate that the use of the Bravyi-Kitaev transformation is typically at least approximately as efficient as the canonical Jordan-Wigner transformation, and results in substantially reduced gate count estimates when performing limited circuit optimisations.Comment: 46 pages, 11 figure

    Processes controlling carbon cycling in Antarctic glacier surface ecosystems

    Get PDF
    Glacier surface ecosystems, including cryoconite holes and cryolakes, are significant contributors to regional carbon cycles. Incubation experiments to determine the net production (NEP) of organic matter in cryoconite typically have durations of 6-24 hours, and produce a wide range of results, many of which indicate that the system is net heterotrophic. We employ longer term incubations to examine the temporal variation of NEP in cryoconite from the McMurdo Dry Valleys, Antarctica to examine the effect of sediment disturbance on system production, and to understand processes controlling production over the lifetimes of glacier surface ecosystems. The shorter-term incubations have durations of one week and show net heterotrophy. The longer term incubations of approximately one year show net autotrophy, but only after a period of about 40 days (~1000 hours). The control on net organic carbon production is a combination of the rate of diffusion of dissolved inorganic carbon from heterotrophic activity within cryoconite into the water, the rate of carbonate dissolution, and the saturation of carbonate in the water (which is a result of photosynthesis in a closed system). We demonstrate that sediment on glacier surfaces has the potential to accumulate carbon over timescales of months to years

    Antarctic ice sheet fertilises the Southern Ocean

    Get PDF
    Open access journalSouthern Ocean (SO) marine primary productivity (PP) is strongly influenced by the availability of iron in surface waters, which is thought to exert a significant control upon atmospheric CO2 concentrations on glacial/interglacial timescales. The zone bordering the Antarctic Ice Sheet exhibits high PP and seasonal plankton blooms in response to light and variations in iron availability. The sources of iron stimulating elevated SO PP are in debate. Established contributors include dust, coastal sediments/upwelling, icebergs and sea ice. Subglacial meltwater exported at the ice margin is a more recent suggestion, arising from intense iron cycling beneath the ice sheet. Icebergs and subglacial meltwater may supply a large amount of bioavailable iron to the SO, estimated in this study at 0.07-0.2 Tg yr-1. Here we apply the MIT global ocean model (Follows et al., 2007) to determine the potential impact of this level of iron export from the ice sheet upon SO PP. The export of iron from the ice sheet raises modelled SO PP by up to 40%, and provides one plausible explanation for seasonally very high in situ measurements of PP in the near-coastal zone. The impact on SO PP is greatest in coastal regions, which are also areas of high measured marine PP. These results suggest that the export of Antarctic runoff and icebergs may have an important impact on SO PP and should be included in future biogeochemical modelling.Philip Leverhulme PrizeLeverhulme Research FellowshipLeverhulme TrustRoyal Society Fellowship7th European Community Framework Programme - Marie Curie Intra European FellowshipNatural Environment Research Council (NERC

    Stable microbial community composition on the Greenland Ice Sheet

    Get PDF
    The first molecular-based studies of microbes in snow and on glaciers have only recently been performed on the vast Greenland Ice Sheet (GrIS). Aeolian microbial seeding is hypothesized to impact on glacier surface community compositions. Localized melting of glacier debris (cryoconite) into the surface ice forms cryoconite holes, which are considered ‘hot spots’ for microbial activity on glaciers. To date, few studies have attempted to assess the origin and evolution of cryoconite and cryoconite hole communities throughout a melt season. In this study, a range of experimental approaches was used for the first time to study the inputs, temporal and structural transformations of GrIS microbial communities over the course of a whole ablation season. Small amounts of aeolian (wind and snow) microbes were potentially seeding the stable communities that were already present on the glacier (composed mainly of Proteobacteria, Cyanobacteria and Actinobacteria). However, the dominant bacterial taxa in the aeolian samples (Firmicutes) did not establish themselves in local glacier surface communities. Cryoconite and cryoconite hole community composition remained stable throughout the ablation season following the fast community turnover, which accompanied the initial snow melt. The presence of stable communities in cryoconite and cryoconite holes on the GrIS will allow future studies to assess glacier surface microbial diversity at individual study sites from sampling intervals of short duration only. Aeolian inputs also had significantly different organic δ13C values (-28.0 to -27.0‰) from the glacier surface values (-25.7 to -23.6‰), indicating that in situ microbial processes are important in fixing new organic matter and transforming aeolian organic carbon. The continuous productivity of stable communities over one melt season makes them important contributors to biogeochemical nutrient cycling on glaciers
    corecore