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ABSTRACT

Digital computer simulation has become an important
technique for the evaluation of a wide range of systems.
A general method, suitable for use in digital computer
simulations, is often needed to measure the performance of
these systems. A useful criterion for performance evalua-
tion is the mean-square error between waveforms at two
points in a system oOr between the waveform at one point and
a theoretical reference. Signal-to-noise ratio, a useful
parameter in many cases, can be defined for arbitrary wave-
forms using measurements of power and mean-square €rror.
Other system parameters, such as gain and delay, can be
given general definitions through the use of a minimum
mean-square error criterion. Techniques are developed to
estimate power, gain, delay, stgnal-to-noise ratio, and
mean-square error in digital computer simulations of low-
pass and bandpass systems. The techniques are applied to
analog and digital communications. The signal-to-noise
ratio estimates are shown to be maximum likelihood esti-
mates in additive white Gaussian noise. The methods are
seen to be especially useful for digital communication
systems where the mapping from the signal-to-noise ratio
to the error probability can be obtained. Simulation re-
sults show the techniques developed to be accurate and quite
versatile in evaluating the performance of many systems

through digital computer simulation.
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I. INTRODUCTION

Digital computer simulation is becoming an increasing-
ly important tool in the analysis of manry systems. In
order to evaluate systems through the use of computer simu-
lation, a general quantitative measurcment of performance
that can be applied to a broad range of systems is needed.
In many cases, an appropriate measurement of performance is
the mean-square error between waveforms which appear at
different points within a system, or between the waveform
at one point and some theoretical reference waveform. In
cases where the mean-square error itself is not an appro-
priate figure of merit, other useful measures of performance
may often be derived from the mean-square error.

One quantity commonly desired in evaluating many sys-
tems is the signal-to-noise ratio. By defining noise as the
mean-square error, it is possible to use measurements of
power and mean-square error to obtain signal-to-noise ratios
for arbitrary waveforms. This procedure is complicated by
the fact that many systems contain unknown gain and delays
wiiich need to be estimated in order to calculate the mean-
square error. These parameters, also, can be defined through
determination of estimates which minimize the mean-square
error or maximize the signal-to-noise ratio. One area in
which measurements of power, gain, delay, and the signal-

to-noise ratio are particularly needed is in the evaluation
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of an#log and digital communication systems through digital
simulation.

The widespread use ot complex digital communication
systems, and the advancement ot computer technology 1n re-
cent vears has resulted 1n the increased use of digital com-

puter simulation for predicting the pertormance of digiial

communiciat ion svstems,  Monte Carlo technigues have been
applied to a wide variety of systems, Observations ot the

simulated system under various operating conditions are used
to predict the performance of the actual system.

The most common method for evaluating the performance
of a digital communication system through computer simula-
tion is to determine the symbol error probability by direct
error counting. However, this technique has the disadvantage
of requiring prohibitively large amounts of computing time
to measure typically encountered error probabilities. For

example, on the average, to produce ten errors at an error

-

- 7. .
e requires that 10° information symbols

probability of 10~
be simt rated. Extremal statistics and related techniques
can generally extend the practical range of the error
counting method by approximately an order of magnitude.
However, estimation of error probabilities below about

-4 -5 . . .
10 or 10 still require too much computer time to be
economically feasible in most cases.

When the mapping from the signal-to-noise ratio to

the error probability is either analytically known cr can

be experimentally determined, an alternative approach is

g
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to estimate the signal-to-noise ratio and map this to the
symbol error probability. In the work which follows, a
method is developed to accurately measure the signal-to-
noise ratio in a digital computer simulation of a communi-
cation system. The method is quite general and may be
applied to a wide variety of systems. Both digital and
analog systems can be evaluated. The use of direct simula-
tion is not restricted to systems with lowpass signals.
Simulation of a bandpass system may utilize either conver-
sion to an equivalent baseband system, in which lowpass
signals are processed, or a direct simulation of the system,
which retains signals having bandpass speectra. The latter
approach is commonly referred to as direct RF simulation,
even when the signals are not radio frequency.

| In the work which follows, computer routines are de-
veloped for implementing signal-to-noise ratio estimators
for the lowpass case and for the bandpass case where direct

RF simulation of a bandpass system has been utilized. The

lowpass estimator forms a minimum mean-square error estimate

of the signal, allowing for any unknown ampliitude scaling
and time delay within the system. In the bandpass case,
both group delay and phase delay of the signal may be
arbitrary. The FFT provides a practical method for esti-
mating delay in the lowpass case. For direct simulation of
bandpass systems the FFT is essential for independently
determining group and phase delay to form the minimum mean-
square signal estimate. An option is provided for applving

a data window to smooth the estimates if desired.

By $o24



To evaluate the accuracy, reliability, and versatility

of the signal-to-noise ratio estimation routines. a variety

e AR

of tests are performed. First simple filtered noise tests
are used to verify the accuracy and determine the useful
range of the estimators. Then digital computer simulation
and performance evaluations are conducted tor a number of
systems including FM systems with phase-locked loop demodula-
tion, coherent ASK and FSK. noncoherent FSK, and Ravleigh
fading channels, including diversity transmission. The
simulations incorporate additive Gaussian noise, and signal-
to-noise ratio estimates are obtained to beyond 50 dB in some

cases using simulations of approximately 103

information
symbols. The simulations were obtained using the IBM 370

computers at the University of Missouri and a Univac 1110

computer at NASA-Johnson Space Center in Houston. Texas.

1 AR or e

Results obtained from the estimators are excellent.

+ aoms

In all the various systems which were simulated. accurate
results were obtained over the ranges of the signal-to-noise
ratio that were considered. Of course, the necessity of
knowing the mapping from the signal-to-noise ratio to the
symbol error probability is sometimes a handicap in dealing
with digital systems. However, in many cases this mapping
can be determined using analysis or approximately deter-
mined using bounding techniques. Sometimes, however, the %
signal-to-noise ratio is a satisfactory figure of merit, 2
and determination of the svmbol error probability is un- %
!

necessary.




The methods developed appear to be quite versatile
and promise to provide a very useful tool for evaluating
the performance of a wide variety of practical systems

through the use of computer simulation.
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II. REVIEW OF SIMULATION TECHNIQUES

Computer simulation of communication systems is be-
coming a popular technique in the study of systems which

are too complicated for an exact mathematical analysis.

%
f

Simulation offers an cconomical alternative to the fabri-
cation and testing of all the variations of the system
being studied. In order to take advantage of these com-
puter methods, several schemes have been developed for
evaluating the performance of systems through the use of
computer simulation.

Most communication systems require some modulation
technique which generates a bandpass signaling scheme. The
most direct method of accurately simulating such systems
is to generate simulations based upon these bandpass signals.
This method has been used successfully by several investiga-
tors (1] - [6].* An alternative approach is to mathe-
matically convert the bandpass signals to equivalent low-
pass (baseband) signals. The baseband technique avoids
some problems encountered in directly simulating the band-
pass systems and often lends itself to simpler analysis.

For these reasons, the baseband methods have found somewhat
wider acceptance than direct RF simulation of bandpass sys-

tems and appear more often in the literature (7] - [12].

*®
All numbers shown in brackets refer to corresponding num-
bers in the list of references.




One advantage of baseband simulation is that often
less samples need to be used for a given number of informa-
tion symbols. This results from the fact that the highest
frequencies being sampled are those in lowpass signals.
For direct RF simulation of the bandpass signals, the
sampling frequency must be sufficiently high to include the
carrier frequency and usually an upper sideband of modula-
tion. The number of samples necessary for a given simula-
tion time interval is generally at least five to ten times
less with the baseband method. Another advantage is that
the siuulation models are sometimes easier to program. For
example, a bank of filters written for use in an exclusively
baseband simulation may often include only lowpass filters.
In the direct RF simulations, the usually more complex
bandpass filters are necessary. Problems such as adjacent
channel interference can be eliminated in baseband methods,
where no adjacent frequency channels exist. This can be an
advantage if such an idealized system is to be simulated.

More often, however, this inability to directly account
for interference is a disadvantage. Many times in an FSK
system or in a frequency multiplexed system, the problem of
interference between adjacent frequency channels is an impor-
tant effect which must be included in the simulation. The
direct RF simulation can simply model the system as it
actually exists, simulating all channels simultaneously at
the appropriate carrier frequencies. The baseband simulo-
tion is not capable of this approach, so more elaborate {ech—

niques are required.

ol i,



One simulation method used by Hedderly and Lundquist
[13] to account for the interference effects of frequency
diversity is to compute the spectrum of power from adjacent
channels which would fall into the channel of interest and
then to increase the additive channel noise to include the
additional '"noise' power created by interference. Another
technique used by Bello and Ehrman [14] involves the use of
short tone bursts of the desired frequency channel adjacent
in time to tone bursts of two interfering frequencies. The
}channel is used in rapid time diversity to account for the
-”iitefsjnbol'1nterference effects in an FSK system. These
othods have been applied in RF simulations with some
success, but the direct modeling of all the frequency
channels is certainly more intuitively appealing.

Another disadvantage of the baseband technique is that
it is usually necessary to model inherently bandpass systems
using a complex envelope representation. Hence, either two
real number simulation paths or a complex number simulation
must be used to represent the general system.

In the work which follows, the direct PF simulation
approach for modeling bandpass systems was most often used.
It was felt that the baseband simulations often idealized
and oversimplified some of the various effects which could
not be directly modeled. Also, intuitive insight into a
system seems to be more easily applied with direct RF model-
ing. As explained later, the accuracy of the method chosen
to evaluate the perforinance of the systems being simulated

is a function of the total number of samples used and not
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of the number of modulation symbols involved. Hence the
increased number of samples required by the direct RF simu-
lation technique to simuiate a given number of modulation
symbols compared to baseband methods is not a serious
problem.

Once a simulation, basceband or RF, has been completed
and data collected, some method must be used to evaluate
the system pertformance. In certain limited applications,
only qualitative information is required. Simply plotting
output waveforms and inspecting them visually for distortion
is sometimes acceptable in these cases [15]. However, in
most cases a quantitative measurement of system performance
is required. For digital communication systems, the basic
measure of performance is usually taken to be the probability
that a given information symbol is in error. Several ap-
proaches have been applied to directly or indirectly estimate
this quantity. The most straightforward method is simply to
pertorm the simulation, count the errors. and utilize the law
of large numbers to directly estimate the probability of
error. Other methods use extremal statistics and related
techniques to estimate the probability of error. Still
another possibility is to measure some other quantity such
as the signal-to-noise ratio and estimate the probability
of error indirectly.

By far the most often used technique in the estimation

of PE (the probability of symbol error) for digital communi-

cation systems has been direct error counting. This
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approach has been used by many researchers and is reported
in the literature [16] - [18]. This approach works very
well where it is practical. However, actual systems tyvpi-
cally divspln_v error probabilities rangim: trom H)'ﬁ to l()’7
or even less. To obtain 4 reliable estimate ot the error

probability, it is desirable to utilice at least enough

data to include ten errors.  For a simulation of a system

~

(3] . .
. this would reaquire

exhibiting an error probability of 10~
107 symbols to be processed. This is completely impractica?l
from an economic point of view. For example, Leon and
Kitahara [19] report that for a particular 5@3!1(qaadrature
phase shift keyed) simulation performed on a CDC 6500 com-
puter, the expected cost of generating a single error with
an error probability of 10™% would be approximately $4000.
They obtained PE estimates down to abcout 10-3 with direct
counting methods. Similar results were reported by lLeon

and others [20] for PSK (phase shift keyed) data links.
Bello and Crystal [21] were able to use dircet error

counts for PE to about 10-4. Their system was one which

was difficult to analyze for low signal-to-noise ratios.

For high signal-to-noise ratios, analysis was mathematically
-1

tractable and bounds were developed for P below 10

E
Joining the bounds with the computer simulation results
vielded curves over a wide range of PF. Because of the
large amounts of computer time required., the direct error

count method seems to be impractical below error probabil-

ities of about 10"3 in most cases. or 10771 in the most

e . ek

A e s
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efficient simulations. This is not adequate for most appli-
cations,

In an effort to estimate low error probabilities using
less data, several researchers have applied extremal Statis-
tics to the problem [22] - [26]. In this technique an
eXxponential function is used to approximate the tail of the
density function for the errors by adjusting parameters in
4 general exponential form. The parameters are computed
using the statistics of the maxima (extremes) of groups of
independent samples collected from the simulation [27].
Smaller values of PE are than computed from this easily
integrable exponeut:tﬂ approximation to the density func-
tion. This general technzque may be applied to a wide
variety of density functions which behave as a decaying
exponential on the tails. Specifie tests are available to
determine whether a set of data points do in fact satisfy
this type of behavior [28]. One disadvantage of the ex-
tremal statistics method is that it requires a learning
period when the signal is known so that the parameters may
be computed as a function of only the unknown noise dis-~
tribution. A method to eliminate the learning period and
estimate parameters based upon noisy samples has been
proposed by Milstein [29]. Schwartz [30] and other in-
vestigators have concluded that extremal statistics may be
used to reduce by an order of magnitude in many cases the
data that are required for satisfactory PE estimates.

Attempts to extend these methods beyond about two orders of

T g —
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magnitude often result in PF estimaies which are in error
by almost an order of magnitude, however. It appears
that extremal statistics may extend the capabilities of

oy

the error counting techniques from a typieal 1077 limit
to about 1071 or at best 107", This may be suttficient
in some applications, but 1t is still tar short ol the
lO_6 or 10‘7 range which is often desired.

Another variation of error counting has been tried
with some success by a number of researchers. This method,
described by Gooding [31], is based upon measuring what is
‘termed a "pseudoerror” probability and mapping this quantity
to,PE. To implement this method, thresholds are established
for the demodulated signals other than the usual decision
thresholds used to decode the received signal. These new
thresholds define a region similar to that which corresponds
to an erasure in the classical binary erasure channel. All
demodulated symbols which fall into this highly uncertain
region within the new thresholds are termed pseudoerrors.,
The symbols may still be decoded as usual] there is no need
to actually erase them. By monitoring these pseudoerrors
and applying knowledge of the distribution function which
penerates them, PE may be estimated. A significant advan-
tage of this technique is that it requires no knowledpe of
the input data stream. The thresholds are generally estab-
lished to be symmetric with respect to the ideal signal
points in decision space, so that the pseudoerror probabil-

ity is independent of the stream of input data and cven of

N R T R O e
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its statistics. This method does, however, require that the
distribution function for the noise be known in order that
proper thresholds may be established and the mapping to the
error probability computed. The method has been applied to
PSK and QPSK systems [32] - [34]. It appears to yield re-
sults slightly more reliable than those obtained by extremal
statistics methods. HlHowever, it should be remembered that
the extremal statistics approach does not require that the
distribution function be precisely known. The error prob-
ability estimates obtained using the pseudoerror technique
are usually accurate to within a factor of three for values
of PE as small as two orders of magnitude less than those
which are practical with direct error counting. This method
is not usually capable of measuring Pp much below 10—5 in
computer simulation work, and Leon and Kitahara [35] note
that this technique is not economically feasible for what
they term practical 10_7 error probabilities.

Another similar technique has been suggested by
Weinstein [36], which involves counting the decoded symbols
which fall above some threshold. This method also is
reported to be capable of reliably estimating PE down to
values between one and two orders of magnitude smaller
than is possible with a direct error count. The technique
is based on linearizing the tail of the distribution func-
tion of the noise with a log-log transformation.

An indirect method for estimating the error probability

is to first estimate the signal-to-noise ratio and map this

P L
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into PE. This method has the disadvantage that the dis-
tribution function for the noise must be known, or somehow
the mapping from the signal-to-noise ratio to the prob-
ability of error must be obtained. The estimation of PE
through estimation of the signal-to-noise ratio has one
striking advantage over all the other techniques mentioned.
For any signal-to-noise ratio that can be reliably estimated
where the mapping to PE is known, reliable estimates for the
error probability can be obtained. That is, there is no
reason why PE cannot be measured for any range of interest.
For most digital systems, if signal-to-noise ratios as high
as 30 or 40 4B can be measured, probability of error estim-
ates aré possible far below the typical 1077 range.

A method used for estimating the signal-to-noise ratio
$n order to monitor the error rate of a PCM system is given
by Gagliardi and Thomas [37]. The method presented is only
applicable to a system or a simulation with no unknown delay,
however. No implementation is suggested for use with a
computer simulation. The decoded data stream at the output
is assumed to be correct in order to serve as a reference.

If the method is to be applied exclusively to systems with
very low error probabilities, this might be acceptable. [t
would seem more general and more accurate to use a known

input data stream if possible. This does, however, intro-

duce the problem of finding an unknown delay between input

and output, a problem not treated in [38].
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Another method for signal-to-noise ratio estimation is
suggested by Nahi and Gagliardi [39]. For the casec where
both signal and noise are Gaussian processes with non-
identical correlation functions known to within a constant,
the signal-to-noise ratio may be estimated using a hard-
limiter. The method is based on known properties of the
correlation function of the output of a hard-limiter. This
estimator is clearly very specialized, and its reliability
has not been analyzed. It is not a suitable estimator in
general and is mentioned only for completeness.

The §igna1¥£é-noise ratio estimation tech#ique for find-
1§§ PE ibulduéeém to be the most promising method for small
error probabilities, if some method is available for ac-
curately measuring the signal-to-noise ratio within a digital
simulation. Indeed for P_ below 10-5, it seems to be the
only practical method, since all other techniques are not
economically feasible because of the large amounts of com-
puter time they require. It has been suggested [40] that
no single technique for PE estimation should be intended
for a very wide dynamic range of error probabilities and
that different methods should be applied on differenf ranges.
Whether this is true or not, the missing range for PE estim-
ation through simulation seems to be exactly the range most
needed for computer simulation of practical systems, the
range where the error probability is below 1072,

The method used in this work for predicting the per-

formance of digital communication systems through computer
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simulation is estimation of the signal-to-noise ratio,

which is mapped to the error probability. Thus the map-
ping from the signal-to-noise ratio to PE must be known,

or at least approximated. Also, a representation of the

signal must be known to serve as a reference. However,
it is assumed that the system may incorporate any unknown %
amplitude scaling and any unknown linear phase characteris-
tic in processing the signal, so that the exact form of the
signal at the point of measurement may be quite different
from the form of the reference. None of the other techni-
ques described above require knowledge of both the signal
form and tﬁe maﬁping f}om the signal-tb-noise ratio to Pg.
However, each method requires that either the signal or the

noise distribution function be kpown. The big advantage of

‘the signal-to-noise ratio method is that practical systems ‘
operating with practical error probabilities can be analyzed
through computer simulations. No other technique is capable
of this. And it is worthy of note that in this process

for estimating PE, an estimate for the signal-to-noise

ratio is always obtained. The signal-to-noise ratio

itself is often a useful parameter in evaluating communi-

cation systems without reference to an error probability.
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ITI. DESCRIPTION OF THE PROBLEM

If the SNR (signal-to-noise ratio) is to be adopted
as a parameter for evaluating the pertormance of all sys-
tems to be analyvzed, a general detfinition for this quantity
must be developed. For most practical communication sys-
tems, the amplitude response and phase characteristic of the
system are not precisely known. Therefore, at any arbitrary
point in a system where an estimate for the SNR is desired,
it is often difficult to completely specify the signal.
Thus, before the SNR can be estimated, & rigorous definition
for the signal must be devised.

It is usually possible to provide an input to a system
so that the signal component of the waveform at the test
point is known except for changes imposed within the sys-
tem by an unknown scale factor and linear phase characteris-
tic. A linear system is usually considered to be distortion-
less if it imposes only amplitude scaling and a time delay
upon an input signal [41]. It seems appropriate then to
allow for any arbitrary scale factor and delay to be present
in the signal component at the point where the SNR is to be
estimated. For lowpass systems, this signal model is
adequate.

In such a case, Shepertycki [42] has suggested an
error measurement scheme for telemetry systems. In his
method of error measurement, the mean-square error is com-

puted between the waveform to be analyzed and a reference
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signal. The amplitude scaling and time delay of the ref-
erence are adjusted to minimize the mean-square error, and
this error is used as a figure of merit for the system.
Simpson and Houts [43] have proposed that the delay value
which minimizes the mean-square error be defined as the
average time delay for a linear system. Later, the same
investigators [44] suggested that the minimum mean-square
error technique can be used in the analysis of waveform
distortion in linear systems. It is also suggested that
random noise could be included in this analysis.

When a bandpass system is being analyzed using direct
RF simulation, both group delay and phase delay are in-
volved. A more general definition for the signal component
is necessary for this more complicated case. In bandpass
systems involving modulation, the information is carried in
the complex envelope of the signal. To avoid corruption
of the information, it is sufficient that this envelope
remain undistorted; delay of the carrier itself is not
importanrt in preserving the information content of the sig-
nal. It is possible to model phase delay as a time delay of
the carrier, and group delay as a time delay of the complex
envelope. Therefore, a definition of the signal in this
case should allow for any arbitrary scale factor, delay of
the envelope (group delay), and delay of the carrier (phase
delay) to be present at the point of measurement.

In keeping with this reasoning, a definition was de-

veloped for the signal component of any arbitrary bandpass
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waveform to be analyzed. It is assumed that a reference
signal is available which differs from the signal com-
ponent only by an unknown amplitude scale factor and un-
known group and phase delays. For lowpass systems the
group and phase delays are equal, and only the scale fac-
tor and a simple time shift are unknown. To defince the
signal at the point of measurement, the mean-square error
between the reference signal and the waveform to be analyzed
is observed. The form of the reference after amplitude
scaling and appropriate time delays have been imposed upon
it to minimize the mean-square error is defined to be the
signal component of the waveform under test. All other
components of the waveform are grouped together and are
termed noise. Thus errors resulting from both random noise
and system distortion terms are included. With this defini-
tion, it is possible to define the SNR for any system where
an appropriate reference signal can be obtained. In digital
computer simulation, such a reference waveform is almost
always available.

Once the reference and noisy waveforms have been ob-
tained, the problem of estimating the SNR involves finding
a method to determine the gain and delay values which yield
the minimum mean-square error. It will be shown in later
sections that the appropriate gain and delay values can be
obtained using the cross-correlation function between the
noisy waveform and the reference. For bandpass systems, the

appropriate value of group delay will be seen to be the value
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for which the envelope of the cross-correlation function

is maximized. For a lowpass system the peak of the ¢ross-
correlation function itselt indicates the AVerage system
delay. In either case the cross-correlation function must
be found. For large sets of data, the computer time ro-
quired to dircctily generate this function is prohibitive,

By utilizing the FFT, the Cross-correlation tunction ean

be computed quickly. Hilbert transform methods provide a
way to obtain the envelope of this function when it is
required. Scanning these functions for peak values provides
a delay estimate. However, it was experimentally determined
that the errors introduced in the successive transforma-

tions make the values obtained for the cross-correlation

function unacceptable for estimating the SNR, except in the

very noisy cases where the SNR is quite low. To obtain a
good SNR estimate, a more accurate method is required for
the final computations.

In the lowpass case, the signal component of the wave-
form may be obtained by merely time shifting and amplitude
scaling the reference stgnal. A relatively simple method
was found fo: accurately estimating the SNR in this case.,
When the system is bandpass, arbitrary group and phase
delays are both involved; simple time shifting will not
account for these effects. No simple scheme was found for
deriving the signal component by performing a trivial opera-
tion on the reference for this case. The most direct
methods seem to involve either a complicated filtering

operation or successive Fourier transformations.,  The
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errors introduced in these methods defeat the purpose, which
is to obtain a highly accurate representation of the signal.

A method was foﬁnd to measure the SNR in direct RF simulations
of bandpass systems, but it is more complex than the lowpass
case. Therefore, lowpass and bandpass systems are treated
separately in the following development of the estimators.

A question that is considered is that of how accurate
and reliable the estimates obtained for the SNR are. A
partial answer is obtained by simply using the estimators on
a variety of systems where the SNR can be estimated by
another means for comparison. Consideration is also given
to the statistical properties of the estimators. It is help-
ful to compare these estimators to maximum likelihood estim-
ators. Confidence intervals to indicate the reliability of
the estimates are developed where practical, also.

After the SNR estimators have been developed and imple-
mented, they are tested on a wide variety of systems. Both
analog and digital systems are simulated and evaluated using
the SNR estimators. The systems are necessarily chosen to be
suitable for theoretical analysis, since the estimators
themselves are being evaluated. For digital systems the
desired parameter for evaluating performance is usually the
symbol error probability. Therefore, in the testing pro-
grams, digital systems are simulated where the mapping from
the SNR to PE is known. For PE ranges where it is prac-
tical, a logical test for digital systems is to compare the

error probability estimate computed from the measured SNR
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to the error probability obtained by direct error count.
Obviously this testing is restricted to large error prob-
abilities, since the direct counting technique is imprac-
tical elsewhere. However, it provides an excellent test
for the SNR estimators where it can be applied. Where the
SNR is large, it is only possible to directly test the
estimation of the SNR itself, using simple systems where
gain and phase information are known, and the true SNR can
be computed. For this range it is not practical to make
direct comparisons with the error probability, since there
exists no feasible alternative to the SNR estimators for
determining PE at low error probabilities--the very reason

for developing these estimators in the first place.
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IV. AN SNR ESTIMATOR FOR

COMPUTER SIMULATIONS OF LOWPASS SYSTEMS

A. THEORETICAL DEVELOPMENT

In analyzing a communication system by computer simula-
tion, or in evaluating the simulation itseltl, quantities of
interest are the mean-square error and the signal-to-noise
ratio at various points in the simulation. Measuvements of
system gain, system delay, and power are also important
in the analysis of many systems. Subroutine SNRMSE is a
computer routine which was developed to estimate these quan-
tities in digital computer simulations of wide-sense sta-
tionary lowpass systems.

In computing all these quantities except power, two
sets of data are required: a reference array and an array
of measurement data to be analyzed. For the computation

of the error, the measurement data is compared to an

amplitude scaled and time-shifted representation of the
reference data. A lowpass system which exhibits only

amplitude scaling and a time delay is considered to be
] distortionless or ideal. Optimal estimates for system

gain and system delay are defined to be those values of

the gain and delay which minimize the mean-square error

between the measurement data and the reference data.

The reference signal will be denoted by x(t). and the
measurement data by y(t). Since the ideal system is

assumed to impose only amplitude scaling and a time shift

T T T T T O T L O N TN B - .
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on the reference, the ideal signal at any point may be
represented by Ax(t-t1), where A is the assumed gain of the
system and 1t is the assumed delay. Then, letting an over-

bar denote a time average, the mean-square error is given

by

E(A, 1) = [y(t) - Ax(t-1)]2 (1)

Figure 1 shows the test configuration which is assumed for

computing the mean-square error. Expanding (1),

E(A,1) = y2(t) - 2Ax(t-1) y(€) + AZx2(t_1)

E(A,1) = y2(t) - 2Ax(t-1) y(t) + AZx2(t-1).

And, assuming a stationary system,
E(A,1) = P_ - 2AR_ (1) + A2p (2)
’ y xy x
where

= power in the measurement data v(t)
Px = power in the reference data x(t)

cross-correlation function between the ref-

o
b
<
~
-
N
]

erence data and the measurement data.

It is clear that Py and Asz are positive quantities.
Hence, for any value of A, E(A,7) is minimized when
[Any(r)] is maximized. Assuming system gain A is posi-
tive, the optimal estimate for system delay must therefore

be the value of delay for which ny(r) is maximized.
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Dernoting this value of delay by Tm’ the mean-square error

becomes
2
E(A.Tm) = Py - ZAny([m) + A Px.

With Tm fixed, the expression for E(A,Tm) is differen-
tiated with respect to A and set equal to zero to yiceld
the optimal estimate for system gain. This estimate is

denoted by Am so that

dE(A,Tm)
Ty = —2ny(1m) + 2Ame = 0.
&'Am
Thus
R._ (1)
Am = _5%_J£_ . (3)

by

_ X m
E(A_,1 ) =P - 2L B (4)

From the definitions of Am and Tm’ the estimate of the
signal at the point where the measurement data is taken
must be Amx(t-rm). Thus the signal power at that point

in the system is estimated to be

S = [Amx(t-‘tm)]2 - AS‘PX (5)

TR AT S BRI A 2 e z
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or

s =Xy m (6)

In obtaining the SNR estimate, all components of y(t)
which are not included in the signal estimate are termed
noise. That is, the SNR is defined as the ratio of the
signal power to the noise power at the point where the
measurement data is taken; and noise will include any dis-
tortion or roundoff errors present in addition to the

additive random noise. Then the SNR may be expressed by

R (1‘)
SNR = — S = pi—_ﬁ
E(A_,1 ) 2
m’ m ) R (1)
y P
or
2
R, (1)
SNR = XYM . (7)
PxP - Rx (Tm)
If the normalized cross-correlation is defined by
6 27263 M A
x2(t) - yz(t) 'ixpy

then -12p<1. It is possible to express the SNR in the form

2

SNR = —Lf ) (8)

1 -po

PO o P T T R O D T O T e S L T S
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Similarly, if the errcr is normalized by Py,

R (1)
= _ Xy m
EN 1 P D (9)
XYy
or
_ 2
EN =1 - p~. (10)

Estimates of the various system parameters in terms of

P P and ny(Tm) are given in Table 1.

x’ "y’

Equation (8) illustrates that the SNR estimate is
accurate if the normalized cross-correlation p is accurately
determined. It is important to note that p is independent
of the power contained in the reference and measurement
data. Therefore, very accurate estimates can be obtained
for the SNR, even in the presence of large errors in the
individual measurements for Px’ Py, and ny(T). As long
as the same data are used to compute Px and Py as were
used in determining ny(r), errors in tihe measurements
often tend to be cancelled when ny(r) is divided by
/5;3;_. This effect is used to advantage in the SNR
estimation routine.

When the SNR is to be estimated in a digital computer

simulation, the values of R__(t ), P

xyTm %’ and Py must be

estimated from a finite set of sample values. If a set

of N samples are to be used, equation (7) becomes




TABLE I.

PARAMETER ESTIMATES FOR LOWPASS SYSTEMS

IN TERMS OF Px, Py, Tm’ AND ny(xm)
Parameter Estimate
Rx (Tm)
Gain A = 2L =
m P
X
Delay T
(As defined in text)
R2 (1p)
Signal power at the S = ——%————
point of measurement x

Ri (rm)
Mean-square error E(A_,t )=P_ - .3 S
m’ m y Px
RZ ()
. E. =1 - s&—TF
Normalized mean- N PxP
square error* 2 y
EN =1 -9
2
SNR = Fxym)
Signal-to-noise P P _R® (1)
ratio* X'y xy m
2
SNR = __2__§
1 -9
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x(ti-rm)y(ti)]z

) 2

1
N

[ eopmenmen |

i=1

N N

2 1 2 1
lx (ti-rm)][ﬁ .gly (ti)]—[ﬁ.i
= 1—

1

(SNR) =

2=
e~

&,

2
1X(ti-Tm)y(ti)]

(11)

where the subscript denotes a time sample.

It is possible to determine whether this SNR
estimate is a maximum likelihood estimate for some addi-
tive noise channels. Consider the case where the mea-

surement data are given by

y(t) = A_x(t-1 ) + n (t). (12)

The estimates described earlier for gain and delay will

always give a representation of y(t) in this form where

n'(t) represents all components of y(t) which are ortho-
gonal to x(t~1m). This may be seen by noting that from

equations (1) and (12)

' 2
' (t) = [y(t) - Ax(t-1)1% = B(A, 1) (13)

and also from (12),
) 3, 2 '
yo(t) = [Amx(t—rm)] +n (t) + 2Amx(t-rm)n (t).

Substituting (5) and (13) into the above expression yields

P, = S + E(Ap,Ty) + 28 x(t-1p) n (t). (14)
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However, combining (4) and (6) shows that

P, =S+ E(A_ . ) (15)

Thus, comparing (14) and (15).

Amx(t—tm)n'(t) = 0.

In fact, an alternative derivation of the SNR estimator

can be easily accomplished by using the orthogonality

principle applied to linear minimum mean-square estimation.

Thus, the representation of y(t) in (12) is valid where
u'(t) represents all components of y(t) orthogonal to
x(t-rm). This representation is useful in determining
whether the estimate given by (11), based on minimizing
the mean-sqﬁare error, is also the maximum likelihood
(ML) estimate for the SNR.

To find the ML estimate for the SNR it is first
necessary to obtain the joint probability density func-
tion for samples from y(t) as a function of gain and

delay. For the additive white Gaussian noise channel

y(ti) = Ax(ti—t) + n(ti) (16)

where the subscript i denotes a time sample. The noise
samples are independent and zero mean. Thus the samples
of y(t), denoted y(ti), are Gaussian with means given by

Ax(ti-r). These samples are also independent. Denoting

T R e gt g e S o 1 SR L
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the density function for y(ti) by fi(yi A,1), the joint
probability density function for N samples from y(t) is

given by

—
-—

f (y |A,0) = T f.(y.|A,0) . (17)

- . it7i
y i=1

The values of A and 1t for which this likelihood function

is maximized are the ML estimates for gain and delay. If

the noise variance is denoted by oi, the likelihood func-

tion becomes

_ N, y(tax(e;-1)
f (yiA,t) = 1 exp| -
y i=1 2ng V2 “n
n
or
7 N
£ (V1A 1)=(2102)  exp{-| =% I (yz(t.) + A2x2(t, -1)
v n 202 121 i i

2

o
n

- 2Ax(ti—r)y(ti)) }.

The log-likelihood function is

N
- ) [yz(ti) + A
i=1

2.2
X (ti—r) - 2Ax(ti-r)y(ti)]

D)2

2
1n(2non)
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-

N o N
2A .2 x(t,-1)y(t;)-A )

N
x2(t-1)- ] y2e))
i=1 1 i=1

=N

20 1

2
ln(Znon).

[\l

Since x(t) is assumed to be wide-sense stationary, the
second summation term is not a function of 1. Thus it
is clear that, assuming positive gain, the log-likelihood
function is maximized as a function of 1 when the term
Eilx(ti-r)y(ti) is maximized. F;on (7) and (11), the
discrete form for ny(r) is % -izlx(ti-t)y(ti). Therefore,
the delay value required to maximize the log-likelihood
function is Tm: Hence the delay estimate given by the
minimum mean-square error technique is the ML delay esti-
mate for the additive white Gaussian noise channel.

It can be shown that the ML estimate of the ratio
of two parameters is simply the ratio of the ML estimates
[45]). Therefore, in order to estimate the SNR it is only
necessary to form ML estimates for the signal power and
the noise power and compute the ratio. Denoting the
power in the reference by gx and noting that the discrete

2
form for P_ in (11) is + } 7(t,-T_), the log-likelihood
X N i=1 i m

function may be expressed as
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|-

N
t.-1_) N
2a/F. J [X(t-Tg 2 2
X jei|T— = |y(t;) - NA®P_ - 121 yo(t)
X

SN

N 2
-3 1n(2non).

The power contained in the signal component of y(t) is

given by Asz. Defining Sx = AZPx and rewriting the log-

likelihood function vields

N [x(t,-t_)
1 i ™m
—= 2/5_ y(t.) - NS - y(t)
Zoﬁ X j=1 Jﬁ; i x 1£1

N 2
-3 ln(chn)

again assuming that A is positive.

The ML estimates for S and (02) can be found by

setting the partial derivatives with respect to S and

(o ) equal to zero and solving. Then the ML estimate for
the SNR is the ratio of these estimates.

For the signal power, the partial derivative of the

log-likelihood function yields

or
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o>
[}
wrd
2
e~

x(t, -1 )y(ty) 2 (18)

X i=1

For the noise power, (oﬁ), the partial derivative of

the log-likelihood function yields

N x(t -1 ) N
- —~r——— 2J—x )) y(t) - NS - ) yz(ti)
2(0 ) i=1 /Px i=1
- == =0
2(0)
and using (18)
[2ns - NS_ - Z y (t )] =
(02) X =1
n
or
on = & Iy %(ty) - (19)
i=1
Then, expressing (S&R) as the ratio éx/gﬁ yields
N
- %‘[% - 1 x(ti-Tm)y(ti)]Z
(SNR) = 21l ,
1 : 2 a
N igl y (ti) - 54

Using (18) to replace Sx and using the summation which

represents the discrete formulation for P

;

x results in

N

1 2 (20)
[ﬁ 121 x(t, -Tm)y(ti)]

(SNR) = -
] x%(t, -1 )][1
i=1 rom i

N
2 1 2
J (ti)]‘[ﬁ_z x(ti—rm)y(ti)]

i=1

4-.'""'
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which is identical to (11). Thus the SNR estimator de-
veloped using the minimum mean-square error criterion
yields the ML estimate of the SNR for the white additive
Gaussian noise channel.

If confidence intervals are to be found, it is nec-
essary to determine the probability density function of
the SNR estimate. In the additive white Gaussian noise
case, the required density function can be found unless
the SNR is low. Except for low values of the SNR, it has
been experimentally determined that delay is estimated in
almost all cases with sufficient accuracy that the error in
the SNR estimate generated by inaccurately determining
delay is small compared to other error sources. VWhen delay
errors of significant size do occur, they are usually of
sufficient magnitude to be quite obvious. Therefore, it
is assumed that T, the system delay, has been correctly
determined. 1In order to determine the density function

for the SNR estimate, first denote the term in brackets

in (18) as

~12

G = % x(ti—T)y(ti).

i=1
For the additive Gaussian noise channel described by (16),
each y(ti) is Gaussian distributed; therefore, this weighted
sum of y(ti) samples must also be Gaussian. The mean and
variance of G are easily obtained. Replacing 1t in (16) by

Tm and computing the exXpected value of G yields
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N
= gld
E{G} = E[N izlx(ti—rm)[Alv(('l:i--rm) + n(ti)]]
N N
SA Y Pty ¢y Lox(e ot BEnGe))
i=1 i=1
N
= % Z xz(ti‘Tm) +0
i=1
= AP_.
X

Also, the variance is easily found as follows:

N
E([G-E(6)]?} = E[(% 1 Rt UAx(e -ty en(ey))
1=
N
A 2 2
"N 'Zl x (ti_rm)}]

N
= Eﬂ% Z x(ti-—Tm) n(ti))z]
i=1

1 N N
= 35 E - - . 1.
5 121 jle(t1 SEICIESLICIRLICHD

Since E{n(ti)n(tj)} =0 for i # j,

E{[G-E(G) 1%}
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It is useful to define a normalized statistic with unity
: variance. Therefore, let
¢ =& ¢
/P_ o
X n
and note
, /N /ﬁx A
E{G } = —
n
and
02. = ],
G
3
It then follows that (G ) is a non-central chi-square
random variable with non-centrality parameter [46]
- Np A%
A = E{G }° = 5
a
n
or
: A = N(3SNR). (21)
f Note that (SNR) can be written as
- Sx
b (SNR)= —x5—
(o)) (22)
__¢?
RN
px(on)
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= TS5 - (23)
N 2
[T](Un)

Also, from (22) and (23),

' 2 oi ~
G = T S_. (24)

x
Now, from (18) and (19).it is clear that §x and (83)
represent the square of a weighted sample mean and the
sample variance, respectively, of a Gaussian population.
The weighted sample mean and the sample variance of a set
of samples from a Gaussian population are independent [47].
Hence, the distribution for (SﬁR) is the ratio of two in-
dependent random variables. Using the form in (23), the
numerator has been shown to have a non-central chi-square
density. The denominator, which is just a scale factor
times the sample variance, is a central chi-square statis-
tic with (N-1) degrees of freedom [48].

It is well known that the ratio of two central chi-
square random variables leads to an F-distribution; the
ratio of a non-central chi-square random variable to a cen-
tral chi-square random variable follows a non-central F-

distribution [49]. If the chi-square statistics are
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normalized by their respective nu~bers of degrees of

freedom, a new random variable is defined using (23) by

' 2
N (02)/n
2 n
o
n
where
m = number of degrees of freedom of the non-central
chi-square numerator
n = number of degrees of freedom of the central chi-

square denominator.
This ratio of normalized chi-square random variables has

a non-central F density given [50], [51] by

A
[+ ] _—-
' 1
£.(F |m,n,2) = e ? (DM 1p(F [me2i,n)
i=0
with
ren k , k2 for
' _ Kk (F) .
LOC) k .72
1 +=PF for
n
= 0 F <0

where A = non-centrality parameter of the numerator of

(25); it is given by (21). Finally, note that from (25)

\2
v G n
T, (0%) m
B
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so that using (23)

- D an
F' = B (sNR) (27)

which provides the relationship between F' and (SﬁR).
Equations (26) and (27) determine the density func-
tion for (S&R). For ease of computation, several approxi-
mations to the non-central F cumulative distribution func-
tion are available. One method involves approximating the
non-central F-distribution with a central F-distribution,
which is a widely tabulated function [52]. Another approx-
imation given in the same reference makes use of the
standard normal distribution function. This approxima-

tion for the cumulative distribution functiom is given by

F ,(F |m,n,1)=P(x,)
F

where
o' ]3 | | -2y
mF |3 2 2(m+2) ]
- [m+k] ! - Qn] S YT TS S
1 [2 (m+2x , 2 (mF )%]%
9 2]7 9n \m¥i
(m+X)

and P(+) is defined by

p(x) =

dt. (28)
/2n

x r
1 J -2
e

Substituting the values m=1, n=N-1, and XA=N(SNR) from

(21) into this expression yields an approximation for

O T T L T

e e
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the cumulative distribution function, F(SNR), in terms

of the number of data points used, N, and the true SNR.

)

W
—
el
|

{}
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ALV
[
fe—)
N’
—_—
)
—
ad
[

'(N-lz(sﬁn)]

2+4N(SNR)
| T+N(SNR)

9(1+N(SNR) )"

r 271

2+4N(SNR) _ , __ 2 [g§:113§ﬁgg}§ 2
L_?(1+N(SNR))2 1) | 1+N(SNR)

T
.

F(S&R) =Pﬁ

7

(29)
Using (29) with P(.) defined in (28), confidence intervals
can be constructed. Ninety-nine percent confidence in-
terval curves have been computed for SNR from O to 20 dB
assuming N=1000, N=5000, and N=50,000 samples used for
the (SﬁR)estxmate. Plots of the confidence interval
curves for the white Gaussian noise channel are shown for
SNR values from O to 10 dB in Figure 2 and for SNR values
from 10 to 20 dB in Figure 3. For the values of N con-
sidered, the widths of the confidence intervals vary less
than 0.01 dB for SNR values from 20 dB to 40 dB. Hence
the results at 20 dB may be extended to include most higher
values of the SNR that might be needed.

B. METHOD OF IMPLEMENTATION

In order to form the desired estimates for the SNR and
the normalized mean-square error, it is first necessary
to find estimates for Px, Py, and ny(r ). Perhaps the
most straightforward method for obtaining these quantities

is shown in Figure 4. The estimates for Px and Py are
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Figure 4. Direct Computation of Px, Py, and ny(rm)
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found by simply averaging the squared sample values.

The cross-correlation estimate is found by delaying the
samples from x(t), forming the products of samples
x(ci—I)y(ti) and averaging over the available sample
pairs for any given delay 1. Then ny(wm) is found by
computing ny(r) for all values of 17 where data arce avail-
able and picking ny(Tm) to be the maximum value com-
puted. This provides the estimate for T also. It is

clear from Table I that the values for Px, P , and Rx (t.)

y y m

can be used to form all the desired estimates.

For estimating Px and P this method is easily

v’
applied. Unfortunately, however, this direct approach
for estimating ny(rm) is extremely time consuming for
large sets of data. The entire summation of products
must be performed for each value of 1. A faster approach
is to utilize the fast Fourier transform (FFT) algorithm
to find ny(r) by applving frequency domain techniques,
and this is the procedure used here.

The first step implemented in the computer routine is
to find the approximate value of system delay using the
FFT. The necessary cross-correlation function, ny(r),
is the inverse Fourier transtorm of the cross-power spec-
tral density, S__(f). Thus

Xy

R. (1)

P8, (£)]

0

F‘l[x*(f)Y(f)] (30)
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where the asterisk denotes the complex conjugate, and
X(f) and Y(f) are the Fourier transforms of x(t) and
y(t), respectively. Hence, it is possible to find the
cross-correlation function between two sets of data

x(t) and y(t) by finding their Fourier transforms X(f)
and Y(f), conjugating X(f), forming the product
X*(f)Y(f), and finally inverse Fourier transforming to
obtain ny(T).- As explained earlier, the value of t for
which ny(r) is maximized is the value which the FFT in-
dicates will minimize the mean-square error. Figure 4
can be easily noditied to utilize the FFT for finding
ny(rm); the resulting configuration is shown in Figure
5.

It is convenient to be able to specify the size of
the array to be Fourier transformed independent of the
total amount of data collected. Often it is helpful to
utilize relatively short transform 1enéths. One reason
is that errors due to roundoff increase as the size of
the transform is increased [53]. Perhaps more important,
the amount of memory required to be in the main storage
of the computer is governed chiefly by the size of the
transforms used. The approach chosen allows the FFT size
to be specified as any value less than or equal to the
total number of data values available. Of course, many
algorithms for performing the FFT impose the additional
restriction that the number of points transformed be a

power of two [54].



Samples

of x(t)

48

Samples of y(t)

r—————b FFT
X(f)
Complex
Conjugate
®
X (1)
Y(£)
3
X (f)Y(f
Inverse
FFT
Y ny(r)
E 2
X (ti) Choose
i=1 Maximum
K
px ny )
Figure 5.

f 1)
«
o~
-+
N’

e

\

Computation of Px, Py, and ny(T) Utilizing

the FFT

AHER



iy

it
t

*

4
-
o
-

2

4

49

The X and Y arrays contain the sample values from

x(t) and y(t), respectively. Before Fourier transforming
£ the data,6 the X and Y arrays, which are of length K,
: are divided into smaller blocks of length N. This 1is
illustrated in Figure 6. Because of the assumed wide-
sense stationarity of x(t) and y(t), it is possible to
estimate ny(r) by selecting a short block of data from
the X array and correlating it with the appropriate
samples from the Y array for all values of t. The tech-
nique used to find R

_ Xy
of length N one at a time and form ny(T) as a number of

(1) is to transform blocks of data

separaté segnants. The block of g samples taken from the
beginning of the X array is padded with zeroes to form a
block N samples long. This serves as a reference block.
Then the first block of N samples is taken from the Y
array. The reference block and the first measurement data
block are Fourier transformed, and a segment of ny(r) is
found using the method described. Of the N values which
result, the first % values are valid values of ny(T).
The last g values are extraneous data and are discarded.
The last values fail to be valid because of the periodic-
ity assumed in using the FFT algorithm. This cyclic
property of the FFT is also the reason for padding the
reference block with zeroes.

N

In order to find the next 3 values of Rx (1), a new

y
block of N samples is taken from y(t) which overlaps
exactly one half the first block. This is also shown in

Figure 6. These samples are processed just as for the
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first block. The process is continued as long as there
are data points in the Y array to transform. In this way
ny(r) is found for alil delay values, except for the very
large values where there is insufficient data to perform
the last FFT, The ny(r) array is then scanned to find
the delay value for which it is g maximum. Finding
ny(r) in this way allows the length of the transformed
arrays to be independent of the total amount of data to
be analyzed, except that total data length serves as an
upper bound on transform length.

Once a delay value has been found using the FFT, a

direct time domain approach is used to compute several

errors to a greater extent than is the direct (time
domain) method. Another is the fact that each value of
the correlation function computed with the FFT is obtained
using only g data values. The time domain method utilizes
all the data available from the current delay value to

the end of the data stream. Additionally, the time domain
calculation includes normalization by the power in the

Samples being used at each iteration of the delay. This

array as single samples are added and deleted from the
ny(r) Calculation. After the delay is found, the other

quantities follow easily. Provision is also made to use
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a Hamming data window, if desired, to smooth the final
estimates for ny(T), Px.and Py.

A block diagram of the complete routine is shown in
Figure 7. Input data for the routine consists of the X
array of reference data, the Y array of measurement data,
and various control parameters which indicate such things
as whether to window the data, what the FFT block length
is to be, etc. As shown in the diagram, the reference
block is selected from the X array and loaded into a work
array XT for transforming. A block of measurement data is
selected from the Y array and loaded into the work array
YT for transforming. Both XT and YT are transformed by
the FPT, snd the product X (£)Y(f) is inverse transformed

to yield ny(r). This process is repeated for each block

of measurement data, and the delay value where the FFT

indicates a peak in ny(r) is found. Then iterations are
performed for a few values of 1 around this peak, and the
direct time domain method with double precision arithmetic

is used to compute

R_. (1)
vP_P
Xy
for each iteration, where
1 K-1
ny(r) = == 1£1 X(i)Y(i+1) (32)

and

i 1o i b ATt e b b s o SR8
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K-1
1 2, .

P, = ¥t .Z X“(i) (33)

i=1

and

K¢

P, = ﬁ%; Y2(i). (34)
’ i=1+1

In the above expressions, K is the total number of data
samples in the X or Y array, and 1 is used to denote the
sample index in the array. The number of iterations per-
formed about the initial estimate for T is specified by

an input parameter, ILROAM. The peak of this normalized
cross-correlation defines T. The value of Py is computed
directly as the average of the squares of the samples in

Y from (rm+1) through the end of the data. The value of
Px is similarly computed using the first (K-Tm) samples

in X. The Hamming window is applied to the data, if
specified, in doing the final computations. These same
sets of data samples are used to compute the Cross-
correlation peak, ny(rm). It is important in calculating
Px and Py to use only those samples which were used in
finding ny(rm), since the estimate for system gain should
be the same in measuring ny(rm) as it is in measuring

Py. In computing the SNR, for example, using

2
RS (1)

SNR = —y
p_P

X'y

2
- ny(rm)

:
;
%
z




the quantities (PxPy) and Riy(rm) are identical in the
first three, four, or even five digits for a high SNR.
Thus it is critical to have identical estimates of gain
implicit in these two terms. In order to make the mean-
square error measurements independent of the effects

of system gain and power in the reference data, a

normalized mean-square €error, ERRN, is computed using

E(A, ) R’z‘ (t )
ERRN=—p—=1 - —;—,1,—,-'—"—~ ) (35)
y Xy

Double precision arithmetic is used for computing all
final output values. A listing of the computer sub-
routine SNRMSE is given in Appendix A.

There are several things which must be considered
in using the computer routine for SNR estimation if

accurate results are to be obtained. Two obvious con-

55

siderations concern the total number of data points used.

Clearly, more data points will usually provide more
accurate results. Also, the data stream must be long
enough to make certain that the system delay value falls
well within the total length of the Y data array being
analyzed. Choosing a size for the FFT block involves
more subtle considerations. Errors in the FFT algorithm
increase as the block length of the transform increases,
which would indicate smaller block lengths should be
best However, the use of small block lengths forces

the routine to select the preliminary delay value (the

R T I T LT R L o TR T I
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value indicated by FFT) based upon short data segments.
Hence, the routine is more likely to miss T completely
if the block length is small. One Key assumption in
the development of the routine is that the data is
stationary from block to block. If the block length
is chosen to be very short, this assumption may fail to
be valid. The routine tests the mean and variance of
each block to be transformed and generates a warning
statement if the data does not appear approximately
stationary. A brief description of these stationarity
tests is“given in Appendix A. These considerations in-
dicate that very short FFT block lengths are also un-
desirable. Some typical values of block length which
have been used with success are 2048, 4096, and 8192.
All thesé values of block length seem to give excellent
results. It does not appear that the largest block
lengths used significantly degrade accuracy through round-
off errors. Block lengths less than 2048, however, have
occasionally been found to miss the initial delay
estimate by large amounts. Results of tests using various
block lengths are given in the section on applications to
analog systems.

It has also been seen that the window function pro-
vides no noticeable improvement in the accuracy of the
routine with most of the systems tested. For this rea-

son, windowing was seldom used in the final testing of

e e e o S




the lowpass SNR estimator.

is not the case, however,
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It.will be seen that this

for the bandpass SNR estimator.
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V. AN SNR ESTIMATOR FOR

COMPUTER SIMULATIONS OF BANDPASS SYSTEMS

A. THEORETICAL DEVELOPMENT

The problem of estimating the SNR in simulations of
bandpass systems is complicated by the fact that simple
time-shifting and amplitude scaling of the reference will
not yield a replica of the signal component of the mea-
surement data, as it does for lowpass systems. Estimates
for both the group and phase delays must be simultaneously
determined. This problem is solved by computing all the
required quantities in the frequency domain. Subroutine
SNRBPS is a computer routine whkich was developed to
estimate the SNR and other parameters in simulations of
wide-sense stationary bandpass systems.

As in the lowpass case, a reference signal x(t) and
a measurement signal y(t) zre required. The estimate for
the signal component of y(t), denoted by z(t), is defined
to be identical to the reference signal except for some
unknown amplitude scaling and unknown group and phase
delays. To form a minimum mean-square estimate of the

signal, it is necessary to define z(t) such that the error

E = [y(t)-z(t)]2 (36)

is minimized, where the overbar denotes a time average.
This implies that the power on the given interval in

the difference signal [y(t)-z(t)] is to be minimized.
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As a direct result of parseval's theorem [55], it is
clear that this 1is accomplished if power computed from
the spectrum of [y(t)-z(t)] on the interval is minimized.
The FFT may be used to compute the desired spectrum,

and the error can be expressed by

2

E Y(£,) - Z(f))

0
e~

i=1

where Y(fi) and Z(fi) denote the ith samples from the
Fourier transforms of y(t) and z(t), and N is used to
denote the number of points transformed. For convenience,
it will be assumed that N is even; if not, it canm easily
be made soO by deleting one of the original data points.

No significant accuracy is lost since only rather large
data sets (N>500) are likely to be used here. If a
binary radix FFT is used, this criterion is automatically
satisfied already. The symmetry jnvolved in the FFT
algorithm makes it clear that the summation over the last
% complex frequency samples must be jdentical to that over
the first % samples, except for errors within the al-
gorithm itself such as roundoff or truncation. This
analysis will neglect such errors. In the actual imple-
mentation it will be explained later that all samples

are utilized in an effort to minimize roundoff errors.

For now, however, it will be expedient to consider mini-
mizing the error computed from only g samples. Hence the

error expression to be minimized can be
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: N 2
g —
= 1 2
L 5 E = .Z Y(f,) -~ Z(f)
i=1
§ which represents one haltf the total error power.

Consider some algebraic manipulations on the

error expression as follows:

N
1 _ 2 r Ty ‘ L%
5 E = 121 [Y(£,) - ZCE))IIY(E)) - Z(f)))]
N
-%[Y(f e + zee 2zt s -2 (¢
- L DY (£) + Z(E D2 (£)-2 (£ )¥(1,)
i Z(E Y (£,)]
,,Z‘ E
£ . (Y 1dzee 12zt ( (Y i
I . = 121 [YCEDIFZOEDIT-1Z (£ )Y )+(Z (£ DY(F)) 7}
4 ]
N N N
2 2 2
= 7 [Y(f.)l2+ ) !Z(f.)l2- ¥ {2Re Z (£ )Y (T.) )
i=1 1 i=1 1 i=1 1 1

where Rel[-. . denotes the real part of a complex quantity.
Thus, the error expression to be minimized can be written

N
2

2
lvces] + T lzcey]? - 2ge
1 i=1 1

o]
([

DN =
I ~100( 222
()

Il e~300|2Z

b * f ‘v
Z (T OY(f,)

i i=1
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Since Z(fi) is not directly available, it is neces-
sary to substitute 2 representation of Z(fi) in terms of
the reference X(fi). From the definition of z(t) given
earlier. it is clear that Z(fi) should differ from
X(fi) only by the frequency domain equivalents of group
delay, phase delay, and gain. It follows from the defi-
nitions of group and phase delay [56] that, for the
assumed linear phase characteristic, phase delay of the
signal estimate z(t) can be adjusted by adding a constant
phase amngle to all frequency components. Also, the
group delay of the estimate for the signal can be ad-
justed by adding a phase angle to each component which

is directly proportional to the frequency of that com-

ponent. Gain is adjusted by a scale factor, just as in
the time domain. Therefore, the expression for Z*(fi)

for positive frequencies (the first % samples from the

FFT) can be written

‘ Z (fi) = AX (fi)e (37)

where A, a, and b are real constants which can be chosen
to minimize error. For negative frequencies the sign of
b is reversed. Adjusting the parameter b is equivalent
to adjusting the pha.e delay estimate in z(t). Varying

the parameter a provides for adjustment of the group

delay estimate.
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Substituting (37) into the error expression to be
minimized yields
N N 2
1 2 2 2 'J(afi+b)
5 E = 1 \Y(fi) + .; AX(f )e
i=1 i=1
N
2 * j(af +b)
- 2Re| ] Y(f,)AX (f;)e .
i=1
If l.-)2 is used to denote the minimized error expression,
2 -j(at +b) 2 2
E, = MIN I [AK(£,)e + 1 vl
A,z bit=} i=1
N
2 - j(af +b)
- 2Re| )} Y(£)AX (f.)e
: 1 1
i=1
or
N N
2 2
E, = MIN A% 3 |X(fi)|2+ ) tY(fi)Iz
A,a,b| i=1 i=1
N
2 jaf.
_2are| T Y(£X(£e eI (38)
i=1 1 1

It should be remembered that Ez equals one half the total

mean-square error.
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Clearly the first two terms in (38) are positive
and independent of a and b. Thus, assuming that A is
a positive scale factor, the optimal choices for a and
b must be such that

N b
2

* Jjat . .
Rel T Yerx () o PP
i=1 ! !

is maximized. Therefore, consider the expression

N
jafi

| 0 2 .
MAX(Re| e I Y(LOX (f))e . (39)
Note that once the summation has been performed, the

resulting sum will be some complex number, say C(a).

Then (39) becomes

MAX{Re[edPC(a) Y.
a,b

If the angle associated with C(a) is denoted by 0, then

C(a) = lC(a)teJe. Multiplication of C(a) by eI yields

ePc(a) = I P*jcay .

The vector represertation for C(a) and ejb-C(a) are
illustrated in Figure 8.

The angle of [erC(a)] may be adjusted to any
desired value by varying b, and the magnitude, lojbC(a)!

= |C(a)|. is independent of this adjustment. It is
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EER 2 LRERLE
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Figure 8. Estimation of the Group Delay Parameter, b
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clear from the diagram that the real part of [erC(a)]
is maximized when b = -8 sO that [erC(a)] is real and

positive. For this choice of b,

ReledPC(a)] = |C(a)].

Therefore, the maximization over b always leads to

uax{Re[eIPC(a)]} = MAX|C(a)]. (40)
a,b a
Although this development ig valid, it should probably
be mentioned that the derivation of equat{on (40) is
simplified somewhat by the decision which was made to
utilize only g samples in the theoreticél development.
If all the samples are used, the summation over N samples
must be broken into two sums OVer the first and last g
samples, and discussions about the symmetry of the FFT
are required. After some development, however, a
criterion for choosing b can be obtained that is the
same as (40).
Using the result given in (40), expression (39) may
be written more simply as
N

2 *
MAX| J Y(£ )X (f.)e
< 1 1
a li=1l

jaf.
! (41)

With a = 2nt the preceding expression may be rewritten as

e e Y
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N
2 . jonfst
MAX| ] X (£.)Y(f.)e i
. 1 1
T i=1
or
N
§ j2nfi1
MAX S, (f,)e (42)
T oi=1 XY 1

where Sxy(fi) is the ith sample of the cross-spectral
density [X*(f)Y(f)]. Let Tm denote the choice of T which
maximizes (42). The the value of T is the group delay

estimate.

Once 7, has been found, it is useful to define

N
2 jz2nt T
R2 = ’121 Sxy(fi)e - (43)

Then, (38) and (43) can be used to obtain

N N
2 2 2 2 2
Ey, = MINJA® ] |x(f.)|%+ 1 IY(f. )|“-2aR.|. (44)
2 & i & i 2
A i=1 i=1
Denoting
N
1 power in X = p_ = % [X(f )]2
2 X i
i=1
and
N
3 power in Y = p, = % 1Y(f,)|2
2 LN i

provides the error expression



67

E2 = MIN[AZP +P

-2AR,,].
A 2

XY

To find the value of A that minimizes E2’ the deriv-

ative with respect to A is computed and set equal to zero.

This yields

dE
2 _d ,2 _
A - dA [A Px+PY—°AR2]—O.

Using Am to denote the optimal choice for A,

24 P ~2R,=0.

Thus,
Ry
A = == = System Gain. (45)
m PX

Substitution of (45) into the error expression

yields
E, = A2 P_+P,,-2A R
2 m XY m 2
RZ
= P _-—2
Y Px
or
_ 2
Ez = PY-AmPX. (46)
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The signal power in the measurement data is clearly

(47)

From (46) and (47), and remembering that E2 represents
one half the total error power, the signal-to-noise

ratio is given by

5) _ a2
SNR = S__i2/ _ X
2E2 E2 P —AZP
Y mX
or in terms of Rz, Px, and PY,
Ry
SNR = — (48)
PyPy-Ry
where
N
2 2
Py = 1 1X(£;)]
i=1
N
2 2
i=1
and N
2 « j2nf.1
- im
R, ‘121 X (£)Y(f,) e

»
.
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Estimates for various system parameters that are avail-
able in terms of these quantities are tabulated for
reference in Table II.

As in the lowpass case, it can be shown that the
bandpass SMR estimator provides the ML estimate tor the
additive white Gaussian noise channel. In this case a
frequency domain approach is used. It is necessary to
determine the joint density of the frequency domain samples,
Y(fi), obtained by the FFT, in terms of the gain A, the
group delay parameter a, and the phase delay parameter b.

First note that for the additive white Gaussian noise

channel y(t) = z(t) + n(t). Therefore, the FFT yields
Y(ti) = Z(fi) + N(fi) (49)

where Y(fi) denotes the ith frequency component of the
waveform under test, y(t), and Z(fi) and N(fi) represent
estimates for the signal and noise components, respectively.
The discrete transformation of the noise may be written

N-1 -janik/N

Y n(t.) e
k=0 ¥

A L

N(fi)

or

Nil
n(t, Jcos(2nf_
k=0 k i

AL
)
A4

]

N(fi)

2%
~

.1 .
-5 I n(t )sin(2nf,



TABLE II

PARAMETER ESTIMATES FOR BANDPASS SYSTEMS
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IN TERMS OF Px, PY, T AND R2
Parameter Estimate
R
. _ 2
Gailn Am =P

&)

Group Delay

T (as defined 1n text)

2
Signal power at the point S = 2!*2
of measurement Px
Ry
Mean-square Error E=2 PY - P
x’.
R2
Normalized Mean- E. =1 - 2
square Error N ppr
Ry
Signal-to-Noise Ratio SNR = 5
PyPy-Ry

E

Sl e Sl
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which is
where
1 N1 k
NR(fi) = 5 Z n(tk)cos(ZTrfi N
k=0
and
1 Nol K
NI(fi) = X kgon(tk)s1n(2nfi N

The parameter N represents the total number of points
being transformed.

Since ln(fi) and ﬁl(fi) are linear combinations of
Gaussian random variables, they must themselves be Gaussian
distributed. Also, they represent the direct and quad-
rature components of the ith spectral component and are
uncorrelated [57]. Thus for any given i, NR(fi) and
NI(fi) are independent Gaussian random variables. Further,
since spectral components of different (non-overlapping)
frequencies are uncorrelated, it follows for any ergodic
process that NR(fi) and NR(fj) must be uncorrelated for
any i # j where the FFT gives a valid representation of
the spectral components in the frequency domain [58].

The same argument holds for Nl(fi) and NI(fj)' The FFT
provides a valid representation of spectral components

for frequencies up to one half the sampling frequency,

if properly applied. This corresponds to the first

half of all the computed frequency domain samples.
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For real signals, which are the only ones considered
here, the latter g complex samples produced by the FFT
are the complex conjugates of the first g samples [59],
This deterministic symmetry makes it clear that no addi-
tional information is gained in using the second half of
the samples. Therefore, the analysis continues based
upon only g complex samples.

Uncorrelated Gaussian random variables are inde-
pendent. Therefore, the first half of all the noise
samples computed by the FFT, NR(fi) and NI(fi)’ are
independent.

It is useful to extend the R and 1 subscript notation

to include Y(fi) and Z(fi) so that
YR(fi) = ZR(fi) + NR(fi) (real components)

and

YI(fi) ZI(fi) + NI(fi) (imaginary components).

Then, the joint density of the first g real sample

values and g imaginary sample values can be written as

=2
st

PY('?IA,a,b) = pi(YR(fi)IA.a.b)pi(YI(fi)IA.a,b)

i
where pi(YR(fi)lA,a,b) and pi(YI(fi)|A'a'b) are the

Gaussian densities for the ith real and imaginaary sample

R T T R T N I . o ey I T N T
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values, respectively. Since N(fi) is zero mean, the

means of YR(fi) and Yl(fi) are given by ZR(fi) and Zl(fi)'
Under the white noise assumption, the noise variance will
be the same for each NR(fi) and NI(fi) and will be denoted
by oi. Admittedly, this is not generally the case, since
filtering is usually present which scales noise dif-
ferently at different frequencies. However, an exact
analysis would be system dependent and a general solution

does not appear possible.

From (37) it is seen that

ZR(fi) = A[Xn(fi)cos(afi+b)+xl(fi)sin(afi+b)]
and (51)

Zl(fi) = A[Xl(fi)cos(afi+b)—xn(fi)sin(afi+b)].

Using these results and assumptions, the joint density

becomes
N

_ 2
P (Y|A,a,b) = T

1
Y i=1 2ﬂC§

- : i 1
YR(fi) A[XR(fi)cos(afi+b)+XI(fi)s1n(afi+b)J
/2 In

'expﬁ—

YI(fi)-A[Xl(fi)cos(afi+b)-XR(fi)sin(afi+b)] 2

V2 on
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This density, which is the likelihood function for A,

a, and b can be rewritten after some algebraic manipula-

tion as

P (Y|A,a,b) =

I e~1090°%

1

j(at +b)

2 2, .
X )+X ()

3
_§ Y2(f . )+v2(t, ) |-AZ
s LR S TR
N 1= 1
2 T2
(ZHON) exps N
2
+2ARe| J X (f.)Y(t,)e
L i=1 1 '
B 2
‘ 2°N

The log-likelihood function is

-

2AR

Whnhﬂz

1

Nl
Q |
Z N
A

I~ 2

§ 1

x*(f )Y(f.)e
1 1

2 2
{YR(fi)+YI(fi)]—A

j(af +b)

2

i

0 e~ %2

2 2
1[XR(fi)+XI(fi%

/s

7 (52)

N 2
—Eln(QﬂcN)

(33)

By definition, ML estimates for the parameters a and b

are those values which maximize this function.

Assuming

that A is any positive scale factor and ci is any positive

value, the optimal choice for a and b must be such that

the expression
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* j(af;+b)
Re X O(f)Y(f))e (54)

i

il 1002

1

is maximized. Note that this is true regardless of the
values of A and og, which will be variables in determining
signal and noise estimates later. This leads immediately
to the criterion expressed in equation (39), and thus it
is seen that the estimates formed for parameters a and
b are ML estimates. Parameters a and b are directly pro-
portional to the group and phase delay estimates, res-
pectively. Thus the group and phase delay estimates
obtained with the minimum mean-square error criterion
are ML estimates for the additive white Gaussian noise
case.

Once a and b have been chosen, expression (54) becomes

a constant. Denoting this constant by R the log-like-

1’
lihood function becomes

N N
L |2ar :23 [Y2(£,)+Y2(t. )]-A2 % [x2(f.)+X2(£.)]
202 17,4 UIp(Ey )Y (1) J-A7 ) {Xp(£,)+XT(£,)
o i=1 i=1
N
N 2
-3 1n(2noN).

At this point it is convenient to drop the subscripted
form of X and Y. Rewriting in terms of the original

complex form yields the log likelihood function
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N

2
L

i=1

N (oo
5 In(2no

1
= 2AR - N).

-3
20§ 1 i

10|22

llY(fi)lz-A2 xcr )12 |-
From {(43) and its earlier equivalent form, (39), and the
definition of Rl' expression (541) maximized over a and
b, it is seen that R1 = R2' Using this result and the
definitions for Px and PY given following (44), the

log-likelihood function can be written

L5 [2AR,-Py-A%P,] - 3 in(270d).

ZON

Just as in the lowpass case, the ML estimate for the SNR
is formed as the ratio of the ML estimates for the signal
power and for the noise power. As a convenience in using
the notation developed for the bandpass case, the estimates
will actually be formed for one half the signal power and
one half the noise power; obviously the ratio is un-
changed. One half the signal power is given by A2PX.
Definingf§=A2PX, remembering that A is assumed to be
positive, and rewriting the log-likelihood function

yields

==

212 /572 ~p. - s. |- Ninc2nd?).
5 2 = " Py =52 -3 N
20y X
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One half the noise power is given by (N og) so that the

log-likelihood function can be written

N 2R2
2(N0§) Py

e N 2m 2 e
Sz s pY—Sz - —2' 1H[E—'(N ON)] (J‘))

The ML estimates for S2 and (N og) can be found by
setting the partial derivatives with respect to S2 and
(N dﬁ) equal to zero and solving. For the signal power,

the partial derivative of (55) yields

N By .1 _4l=0
5 - - =
2(N o) | /Py fg;
or
. R
Sz = F}E (56)
For the noise power, the partial derivative of (55)
yields
N.|%R2 I 2 1 N 1
-(P| == 78, - Py ~ 52 —53 -3 L2, %
/Py (N o) (N oy)

Substituting from (56) and simplifying,

oy,

zag 3
SZ-Py-p T o 10
X X (N 03
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or
~o R2 i
(N ON) = PY - P (57)
X
As explained in the development for the lowpass casc,
the ML estimate for the SNR is simply the ratio of the
ML estimates for the signal power and the noise power.
Thus
R
A 282 _ S2 _ Px
SNR = ~5 = = x5 = 57
2(N UN) (N ON) ) Eg
Y PX
or
) g2
SNR = 5 (58)
PPy - Ry

The estimate given by (58) is precisely that of (48).
Thus for the white additive Gaussian noise case, the

estimator developed is the ML estimator.

Unfortunately the development of confidence intervals

for the bandpass case does not appear to be mathematically

s v s s 2

l)
feasible. The computation of the quantity RE involves
the sum of the squares of two Gaussian random variables

i
,i which are not easily shown to be independent. This may
i

be seen by considering

* j2nf .1
XT (1Y (E e 1 m2

pma i gae il e
T T I LI T B
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|2

I[XR(fi)'jxl(fi)][YR(fi)+jYI(fi)][cos(z"fiTm)

Il e~

‘

+j sin(zwfirm)J 2

) R(fi)[XR(fi)cos(2ﬂfirm)+XI(fi)sin(ZHfirm)j

[}
N

- Yi(fi)[XR(fi)sin(waiTm)—XI(fi)cos(ZHfiTm)]]

! J

)2

[YR(fi)[XR(fi)sin(anitm) - XI(fi)cos(ZWfitm)]

|

il 100

P 1
)

+ YI(fi)[XR(fi)cos(ani'm)+XI(fi)sin(2nfiTm)]}

An inspection of the various terms within braces indicates
that it may be possible to show the individual terms
within the first squared quantity to be independent of

4 A the individual terms within the second squared quantity.

[

However, this is insufficient to guarantee independence
of the complete quantities. If independence were assumed

i}':i in order to continue the analysis, the distribution of

w Rg would be non-central chi-square. It does not appear

o that Rg is the square of a weighted sample mean of a

Gaussian population. This means that the denominator

of (58) cannot easily be shown to be the sample variance
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of a Gaussian population. Hence the distribution for the
denominator of (58) does not follow easily, as was the
case with the lowpass estimator. Finally, it is not
clear that the numerator and denominator in equation
(58) are independent. Thus, determination of the dis-
tribution function for the bandpass SNR estimator appears
to be a very formidable problem. It may be possible to
form an approximation to the distribution function, how-
ever. The estimate has been shown to be the ML estimate
for a white additive Gaussian noise channel. It can be
shown that under reasonably general conditions, the ML
estimate is asymptotically Gaussian as the number of
samples used approaches infinity [60]. Thus, one approach
might be to develop a Gaussian approximation, especially
since the cases of interest generally involve at least
1000 samples. The difficulty with obtaining the approxi-
mation arises in attempting to determine the variance

of (S&R), which is necessary for forming the Gaussian
density. This does not appear to be a simple matter.
Therefore, confidence intervals were not derived in this
work for the bandpass estimator.

Confidence intervals would be convenient in order to
precisely define the reliability of the estimator, at
least for the additive white Gaussian noise channel. A
deeper statistical study of the reliability of the estima-
tors is an area in which further work could certainly be

done. ilowever, a good case for assuming adequate
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reliability of the bandpass estimation routine can be
made based upon empirical data. Results of tests of this
estimator appear later in the section on applications to
analog systems and throughout the section on applications
to digital systems. Excellent reliability is evident in
these results.

B. METHOD OF IMPLEMENTATION

In order to estimate the SNR and other parameters

of interest in simulations of bandpass systems, it is
convenient to first find estimates for PX, Py, and R2‘
As can be seen from Table II, a variety of system param-
eters, including the SNR, can be computed in terms of
these quantities.

From the definitions given for Px, Py, and R2 follow-

ing (48), it is evident that the computation of the re-

quired quantities is done after the FFT has been applied
to the reference data, x(t), and the measurement data,
y(t). A conceptually direct method for computing Px, PY’
and R2 is shown in Figure 9. However, as in the lowpass
case, the most straightforward method of implementation
is not practical because it requires that the complete

summation over all complex samples be repeated for every

possible value of T in order to find T and thus determine

;;ii  Rz.

w;iyf time than is practical using the number of samples

This operation requires a great deal more computer

generated in a typical simulation. In order to make the

SKNR estimation routine practical, some method must be

found for rapidly determing T_.
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Consider the quantity to be maximized in locating

Tm' From (42) and (43)
N
2 JB"fil
R, = MAX | ) S e
1 i=1 -

»
‘he ro d = v "’ " o i N .. \ 3
where Sxy(ti) (X (fi)\(li)l and tp 18 the value of
for which maximization is achieved. Consider the complex

quantity generated by the summation and define

N
2 Jwair
RA(I) = izl Sxy(fi) e .

Also, make the definition

Spfy)

L}
w
—~
-
~—
-
o]
o}
Yod
7
ot
| A
o

This vields

J
SA(fi) e . (59)

Let 1 be chosen to be some value of time equal to
an integral multiple of the time interval between samples

so that



T = KT, 0<k<N-1

where T js the time between samples. VWith this restric-
tion RA(T) is, by definition [61], the inverse discrete
Fourier transform of SA(f). The frequency domain Samples
for fi with (§ + 1)JiSN can be viewed as samples from the
negative frequency range [62]. Thus,RA(r) may be viewed
as the inverse Fourier transform of Sxy(f) with the nega-
tive frequency components set to zero. Remembering that
Sxy(f) is the Fourier transform of ny(r), it is seen
that RA(T) is the function which has a Spectrum identical
to ny(T) for positive frequencies and equal to zero for
negative frequencies. It follows immediately from the

definition of analytic signals [63] that RA(T) is pro-

R, = M?X IR, (1)

and Tm is the value of 1 for which the magnitude of the

analytic signal corresponding to ny(r) is maximized.

rapidly with the FFT. This approach provides the neces-

Sary technique for estimating Tm Quickly.

signal directly from X(t) and y(t) using the FFT. fThis

*
can be accomplished by forming [2x (£)Y(f)] andg setting
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o2

the last sample values (corresponding to negative fre-

quency samples) to zero before inverse transforming.
An alternative approach is to compute ny(r), which is
the real component of the analvtic signal, just as in
the lowpass estimator and to find the imaginary component
of the analytic¢ signal by computing the Hilbert trans-
form of ny(f). Computation of the imaginary component
may be done with a discrete Hilbert transform algorithm
or with the FFT, using the simple frequency domain equiv-
alent of the Hilbert transform (64], [65]. Since the
software to compute and store ny(T) had been written
and thoroughly tested in the lowpass SNR estimator, the
latter approach for computing the analytic signal was
used, and the Hilbert transform was performed with the
FFT.

Instead of computing the liilbert transform and de-
termining the analytic signal for the entire range of
ny(r),a preliminary scan of ny(!) is performed, and
the peak valuc of ny(r) is found. It is assumed that

although the maximum magnitude of the analvtic signal

does not necessarily correspond to the peak of va(r).

it is highly probable, using the slowly varying envelope
concept, that the two maxima occur in the same neighbor-
hoo i. Also, it was experxmenta]ly determined that
approximately twenty well behaved artificial sample

values added at each end of the FFT transform block



—
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helps to avoid any problems with errors resulting from
the discontinuities which may exist there.

The twenty artificial values at the beginning of
the transform block were obtained by taking the first
twenty true sample values in reverse order. For example,
suppose the artificial samples are denoted by YT(i),
i=1,...,20, and the true data values follow, beginning
with YT(21), YT(22), and so on. The values of the
artificial samples are assigned using YT(21-i) = YT(20+i),

for i =1, . . .,20. A s’milar procedure is utilized

‘to develop the artifxcial sample values at the end of the

transfarm bloek using the last twenty true data values.
Experimental testing of this scheme showed that good re-
sults were obtained for a variety of signals, so the
method was adopted for use in SNRBPS.

Therefore, in the implementation used to determine
group delay, the assumption is made that the maximum
magnitude of the analytic signal and the peak value of
ny(r) are separated by a delay value corresponding to
no more than + (g - 20) samples, where N is the number
of samples chosen for the FFT block size. Under this
assumption only one block of N samples needs to be
processed by the Hilbert transformation procedure, since
the analytic signal is required only on the interval

extending + (g - 20) samples from the delay value where

the peak of ny(T) is located.
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This assumption saves computation time and avoids
the problems associated with end effects that result in
attempting to Hilbert transform many separate blocks of
data to produce a longer transformed array. It the signals
involved are not narrowband, it is possible that the peak
of ny(r) could be sufficiently removed from the desired
delay value that the assumption of a + (g - 20) sample
range could result in an error. This never occurred in
any of the applications of the bandpass SNR estimation
routine, however, and the assumption appears to be justi-
fied by the resulting simplifications aud‘reduction in
computer time requirements. The possibility of error due
to this assumption could, of course, be eliminated by
Hilbert ctransforming the entire ny(I) array or by
computing the analytic signal for the entire ny(T) array
directly as mentioned earlier, if it were felt to be
necessary.

As with the lowpass SNR estimation routine, the
elaborate processing performed to initially estimate
delay serves only to determine a starting point for the
final search. The successive Fourier transformations
used to obtain ny(r), and to implement the llilbert trans-
form, reduce the accuracy of the initial Rz estimate.
Also, as in the lowpass case, the original ny(r) compu-
tation for any given 1 value is based upon only g samples
from the x(t) and y(t) arrays. As a result, the initial
estimate obtained for R2 is unsuitable for forming an

accurate estimate of the SNR.
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A number of iterations are performed using a more
direct and accurate computation to form trial values for
R

denoted R in the vicinity of the initial delay

2’ 2’
estimate. The number of points to be checked in the
final iterations is specified by an input parameter Lo
the routine. Each of these computations is pertormed by
first shifting the x(t) data to account for the delay
value being considered and thus the exponential factor

in the defining sum for R2‘ The delayed data are denoted

by xd(t)_ Then the FFT is appliec to data blocks from
SG2nf.1

;;ixd{t} - x{t«t} ‘and ytt) to form X (f,) = (1, )e 1

& Y(f ), respectively Finally, complex conjugates
are computed, multiplication of the sample pairs is
accomplished, and the summation is performed. The magni-
iﬁdépof the resulting sum is computed at each iteration
and is normalized by /ﬁ;ﬁ;, where P and P_ are the powers
computed from the same frequency domain samples that
were used in computing Ré. The peak of this normalized
cross-spectral power computation defines "m and R2 for
use in the final SNR estimate.

The reason for shifting the x(t) data to account

for the éﬁzﬁfT

factor before transforming instead of in-
cluding such a factor in the frequency domain calculations
for R2 is to avoid problems which occur because of the
periodicity inherent in the FFT. Performing the frequency
domain equivalent of time-shifting with a finite block

length yields errors equivalent in the time domain to

R

R T TE T T TIETER T: 7 IR 1y L B
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overlapping the beginning of the block of data from one
array with the end of a data block from another array in
a cyclic fashion. This problem can be overcome by padding
one array with zeroes before transforming as was done in
initially omputing ny(T) in both SNRMSE and SNRBPS.
This still leaves some problems with high frequency com-
ponents generated by the discontinuities which exist after
abruptly setting the waveform to zero at some po.nt. Un-
like the initial ny(T) estimation, the result of the
final R2 computation is used directly in the estimation
of the SNR. Therefore, maximum possible accuracy is neces-
sary. Time-shifting the array before transforming avoids
most of the problems. Although slightly more complicated
in concept, this approach is simpler in implementation
and more accurate.

Actually, the basic quantities which are computed
in the final implementation are (2PX), (2PY), and (2R2).
These computations result from the fact that PX, PY,
and Rz have been defined as summations over only the
first half of the complex frequency domain samples com-
puted by each application of the FFT. The symmetry which
theoretically occurs when the FFT is applied to real data
indicates that including the second half of the complex
samples would yield identical results to those obtained
using only the first half. 1In practice, this is not
quite true because of roundoff errors which occur within

the algorithm due to finite register length. It seems




unlikely that roundoff errors which appear in the

second half of the samples computed by the FFT would be
identical to those in the first half. Also, it is logi-
cal to assume that the mean-square value of the error
introduced by roundoff is roughly the same for samples
in both halves of the computed array. If these assump-
tions are true, the effects of roundoff error should

be reduced by utilizing all the complex frequency domain
samples, instead of only half of them. The additional

samples are readily available and the additional time

required to utilize them is not a significant factor in
the overall computer time requirements of the estimation
routine. Therefore, in an effort to minimize the effects
of roundoff errors, all samples computed by the FFT are
utilized. Summations over all the samples produce the
quantities (ZPX), (ZPY), and (2R2).

In performing the final computations, a data window
is applied before Fourier transforming the data to smooth
the frequency domain estimates, if specified using an
input parameter to the routine. A variety of data win-
dows were tested for this purpose. It was found that
the application of data windows often improves the SNR
estimates in cases where the SNR is relatively high. The
Hanning window appeared to yield the best results and
was chosen for use in the SNR estimation routine. Soine
results of the tests of the various data windows are tab-

ulated in Appendix B.
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A block diagram for the bandpass SNR estimation
routine, SNRBPS, 1is given in Figures 10 and 11. Figure
10 gives an overall view of the routine. Unless the group
delay is known and is input to the routine, the first step
required is to find an initial estimate for Tm denoted
by r;. Then x(t) is delayed and blocks of data from
xd(t) and y(t) are transformed, windowing if specified.
The power in X, Px, is computed as shown, averaging over
all the blocks of data processed. The total power, Px,
is twice the value of Py defined by (48), and the power
in vy, Py, is similarly found. Using delay values in the
vicinity of T;, computations of (2Ré) normalized by
Jﬁ;ﬁ; are performed for the number of iterations specified

by input parameter ILROAM. The maximum value obtained

in these computations is found, and RTMAX is defined as

twice R2 to simplify the notation. Finally, computations

are done for estimating the SNR and for ERRN, the norma-

lized mean-square error. All the final computations

except the FFT are done using double precision arithmetic.
Figure 11 provides a view of the method used to

form the initial group delay estimate, T;. The process

involves first finding the peak value of the cross-

correlation function ny(T). This process 1is identical

to that described in the discussion of the lowpass SNR

estimator. Once the delay value associated with this

peak, TMAX is found, a block of data centered about

TMAX is taken from ny(T). On this interval the Hilbert
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transform is computed ustng the FET. Then the square ot
the magnitude of the analytic sipnal correspeondim to

B o) s computed tor the antervval.  The delay value
corresponding to the peak of the squared mapntt ude e
the inttial extimate tor proup delay | o m this value

is then used as a starting point for the delay rteratrons
performed in the final computations. A Listaing of the
computer subroutine SNRRPS is given in Appendix C.

All the considerations mentioned in the discussion
of the lowpass SNR estimation routine concerning the
total number of data points used and the cholce of the
FFT block length apply as well to the routine for SNR
estimation in simulations of bandpass systems. Larger
sots of data generally result in more accurate estimates
for the SNR. Errors within the FFT increasce as block
stirze increases. However, the use of very short blocks
can cause problems with the stationavity assumpt ions
with the tnitial pgroup delay estimate.  Results of tests
using various block lengths are given in the section on

applications to amilog systems,

b BT AR 5 20 SR i)
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VI. APPLICATION TO ANALOG SYSTEMS

In order to study the accuracy, reliability, and
range of the SNR estimation routines, computer simulations
were performed for a number of analog systems. Initially,
test signals were combined with filtered noise, and the
SNR estimation routines were applied to both lowpass and
bandpass systems. Additive bandlimited white Gaussian
noise was employed, and delays were programmed into the
data arrays in many cases to check the ability of the
routines to correctly estimate the values of these
delays. The test signals used included simple sinusoidal
signals and more complex waveforms with Gaussian distrib-
uted amplitudes. Tests were then made on a more compli-
cated simulation of an FM communication system with
phase-locked loop demodulation.

In all the simulations performed for both analog
and digital communication systems, filter models were re-
quired. Therefore, a general lowpass and bandpass Butter-
worth digital filter with variable order and critical
frequencies was programmed for use in the simulations
which follow. Some preliminary tests of the digital
filter, as described in the following two paragraphs,
were necessary before all of the results could be
properly evaluated.

To accurately determine the theoretical values of

the SNR in the simulations, it is sometimes necessary to

PR OTRE (T T T RTPRY AR
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compute the noise power at the output of a digital filter
using measurements taken at the input. In order to per-
form this computation, the noise-equivalent bandwidth of
the particular filter involved must be found. 1In the
simulations of digital communication systems discusscd
later, the error probability estimates can be properly
formed from the SNR estimates only if the noise-equivalent
bandwidths of the filters can be accurately determined.
Therefore, tests were performed to measure the noise-
equivalent bandwidth of the general filter for a range of
filter parameters.

For many analog filters the noise-equivalent band-
widths are well-known, and tables of these values may be
used to estimate the noise-equivalent bandwidth of the
digital filter. However, in many cases, especially where
a critical frequency of the filter exceeds ten percent
of the sampling frequency, the digital filter noise-
equivalent bandwidth departs significantly from that of
the corresponding analog filter. This is particularly
true when the filter order is low. The noise-equivalent
bandwidth, even for a given digital filter, will vary
somewhat depending upon the details of the implementa-
tion used. Different software packages may compute the
filter coefficients in a variety of ways, resulting in
different errors. 1In addition, the different register

lengths of various machines will also create some varia-

tion in the noise-equivalent bandwidth from computer to
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computer. Thus, in order to determine very accurately

the noise-equivalent bandwidth for a given digital filter

implemented on a particular machine, the bandwidth should
be experimentally measured on the comput v where it is

to be used. The noise-equivalent bandwidth of the general

o b

filter used in all the simulations performed on the

-

IBM 370 was tabulated for a wide range of filter param-
eters using a technique for experimentally determining
the bandwidth. Appendix D explains the method used to
perform the necessary calculations. A brief table is
included to give an indication of the results which were
obtained. A complete tabulation of the rather extensive

results is not given, since it would not necessarily be

applicable to a different software implementation, or

even to the same software used on another computer with

- a different register length. L
2 In order to test the lowpass and bandpass SNR estima- |
tors in estimations of a simple analog system, various delay

values were programmed into test signals. Then, tfiltered

Gaussian noise was added to these delayed signals. Both

lowpass and bandpass systems were simulated, and the two
routines for SNR estimation were applied to measure the
SNR and « "'y values. The signals themselves were not

passed through filters in these tests because unknown i

delay and distortion would be imposed by the filters.

This might vield interesting results, but it would make 1

evaluation of the SNR estimation routines impossible

i

{

4

] ‘i
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because the theoretical values for the delay and the SNR
would then be unknown. These initial tests were intended
to check the accuracy and the useful operating range

for the estimators. The tests were not intended to
measure the delays and accuracy of the filter models.

A block diagram of the configuration used to perform
these simple simulations is shown in Figure 12. The test
signals used included waveforms with Gaussian amplitude
distributions having lowpass and bandpass spectra for use
with the corresponding SNR estimation routines. Sinusoidal
signals were also used with the lowpass routine. Sinusoi-
dal modulation of a sinusoid was included in the tests of
the bandpass routine. The additive Gaussian noise was
filtered so that the noise bandwidth was somewhat greater
than that of the signal. Lowpass and bandpass noise
spectra were usually chosen to correspond with the type
of estimator being used, although this is certainly not
a necessary requirement. From Figure 12 it is clear that
the signal component of the measurement data is identically
a delayed version of the signal source. Thus, even though
the tes: signal is bandpass, subroutine SNRMSE may be
used because the group and phase delays are equal. The
delayed signals were generated in some cases by time-
shifting either the signal or, in the bandpass case, the
modulation. In other cases, such as with sinusoids,

delays were easily programmed into the signal generator

itself.

N R
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WHITE :
GAUSS1AN :
NOISE | FILTER |
SOURCE i
Delayed *
Signal
Plus Noise
SIGNAL > DELAYED
- SIGNAL 2:
SOURCE SOURCE

_ v

SNR ESTIMATION ROUTINE
(SNRMSE OR SNRBPS)

(S&R)

Figure 12. Configuration for Filtered Noise Tests
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The Tresults of these tests are piven in Table 111

and Table IV. 1t should be noted that the SNR results

are accurate to within one dB in all cases. For the

SNRMSE tests the delay costimates are all correct. Be-

cause group delay estimates 1n SNRBPS are determined trom

the magnitude of the complex envelope. delay estimates

may appear to correspond to e¢ither positive or negative

values of gain. However, a negative gain may alternately

be considered as positive gain with a phase delay of 180

degrees. For a signal such as the sinusoidally modulated

test signal, theoretically correct delay values occur

every half cycle of the modulation. There were only two

errors in group delay estimation, and clearly the SNR

estimates were not seriously degraded.

In order to test the lowpass estimator further and

to apply the routine to a simulation of a more complex

analog system, a computer simulation was performed for

an FM communication system. The simulation models re-

quired included an FM modulator model and phase-locked

loop (PLL) models for demodulation, in addition to the

filter package used in the previous tests. Two PLL models

were utilized, one of which incorporated a hard-limiter

at the input, and one of which did not. Transient re-

sponse tests and phase error variance tests were performed

to verify the accuracy of both PLL models. These results,

which are not reproduced here, indicated satisfactory

performance of the models .66 .
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In the FM communication system simulation, several
different combinations of system parameters were used.
Simulations were performed using 10 Hz sinusoidal modula-
tion and a 200 Hz carrier with deviation ratios ot one
and five. Actually, the frequency scale utilized was
arbitrary. For example, if 10 MHz modulation and a
200 MHz carrier were used, the simulation would remain
the same except for scale factors. The frequencies used
were chosen mainly for convenience in determining various
system parameters. Two different sets of seeds were used
for the noise generator. Then, a sample function from
a lowpass Gaussian random process, f3dB = 30 Hz, was used
for the modulating signal with a deviation ratio of one.
Once again two different seed sets were utilized for
generating noise. Every simulation was performed using
both of the PLL models. In each case the system was
simulated for a total of one second with a sampling fre-
quency of 10 KHz. Data were collected for the last 0.75
second. Therefore, results are based upon 7500 samples
in each case. A block diagram of the system under test
is shown with the SNR estimator SNRMSE in Figure 13.

The simulations were performed on two computer
systems, an IBM 370 system at the University of Missouri
and a UNIVAC 1108/1110 system at NASA-Johnson Space
Center. All of the cases described above were tested
using the IBM 370 system, and some of the tests were

duplicated on the UNIVAC 1108/1110 system. Specifically,
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the simulations using sinusoidal modulation and a devia-
tion ratio of five were pertformed on both machines ussing
both PLL models.  Tests were made using PLL natural fre-
quencies of fn =0 and t'n - 100,

In all tosts, the Towpass SNR cstimation rout ine,
SNRMSE, was used to measure the s l-to-norse rat ios
at the input to the PLL demodulator, \SNR)T. and at the

output of the postdetection filter, (SNR) Although

D-
the signal at the input to the PLl, was bandpass, f{t
may be seen from Figure 13 that there is no delay fnvolved
between the reference and the measurement data. Therefore,
the routine developed for lowpass systems may be applied.
Predetection signal-to-noise ratio, (SNR)T, was varted
over a range of values to include the region of threshold.
These values and the resulting values of postdetoection
signal-to-noise ratio, (SNR)D. were tabulated.  This
data appears in Appendix E.

The theoretical value of (SNR)D which results from
a given value of (SNR)T for an FM system using a conven-
tional discriminator with sinusoidal modulation is piven

by {67 )+

.3 JWR . (SNROY |-
. 2w 1 | TP 1 1]
NN e r2 T GSNRY, T D erfely (SR T |
3B I T V31 d |

‘This expression differs from that given by Ziemer and
Tranter bLecause a noise torm is included here which 1
neglected in the reference to obtain O simple approxy -
mation, There are slso notational cliangos,
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where
W = Postdetection filter noise-equivalent bandwidth
BT = Predetection filter noise-equivalent bandwidth
and
fd = Peak ftrequency deviation.

For the case of Gaussian modulation, the corresponding

expression is [68]*

(SNR)D= ——s%5 ' 7S + erfc[/(SNR)T]

where oi represents the variance of the modulating signal.
Theoreticilly, the PLL and the conventional discrimina-
tor performances should be essentially the same for high
values of the SNR. As the SNR is reduced, however, the
PLL should extend to a lower value of (SNR)T before
exhibiting a threshold. Exactly this behavior can be
seen in the curves of (SNR)D versus (SNR)T which were
plotted in Figure 14 through Figure 21. The threshold
extension is more pronounced at the higher deviation ratio,
just as it should be. This may be seen by comparing
Figures 14 through 17 (deviation ratio = 5) with Figures
18 and 19 (deviation ratio = 1). Figures 14 through 17

also show the effect of decreasing the loop natural

* i . .

This expression includes a noise term which is neglected to
obtain a simple approximation py Taub and Schilling. Again
there are notational changes. \
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DEVIATION RATIO = 5
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Figure 16. (SNR)D Versus Case 3
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frequency, fn’ As fn is reduced, the passband of the

PLL is reduced. Less noise power is passed by the loop,

and the threshold is extended more. This may be seen by

comparing Figures 14 and 15 (fn = 100) with Figures 16

P P

and 17 (fn = 40). Continuing to reduce the value of fn'

however, would eventually prevent the PLL from tracking

W g Bk 4 cintnn g
P

the signal accurately because of insufficient demodulator

bandwidth.

The results obtained using Gaussian modulation are
shown in Figures 20 and 21. The measurements of (SNR)D .§
appear to be low for large values of (SNR)T. This reduc-
tion in accuracy was partially caused by distortion of

the lowpass random signal in the postdetection filter,

L
R

since a small part of the signal power fell outside the

passband of this filter. There were also some problems -

TP T Y

with obtaining stationary signals due to the very low

L
T

=} resuits appear to be quite good below (SNR), = 20 dB.

Babtain o baiM a4 o (B

7{ frequency components in the modulation. Even so, the
i
i The accuracy of the simulation should be improved by

& increasing the order of the filter used to generate the

lowpass modulating signal, so that its spectrum would ro’1l

e aay

off more sharply. Reducing the amplitude of the lowest

frequency components of the modulation should reduce the
problems with stationarity and improve the results, also.

The simulation results are in good agreement with

DR R TN Ny o TR

the theoretical results for a true FM system. It is

important to note that subroutine SNRMSE has provided
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accurate SNR estimates for values of the SNR from below

0 dB to over 45 dB. These results indicate that the SNR
estimation routine is valid and accurate. They also
demonstrate the successtul application of the SNR estima-

tor to a simulation of an analog communication system.

P
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VII. APPLICATION TO DIGITAL SYSTEMS

One of the major reasons for developing the SNR
est-mators was to facilitate the evaluation of digital
comnunication systems using computer simulation. Thus,
to test the routines, a number of digital systems were
simulated, and their performances were evaluated using
SNR estimation. These results were then compared with the
theoretical performances. The systems simulated include
coherent ASK and FSK systems and a noncoherent FSK system,
all with simple additive Gaussian noise channels. Addi-
tionally, a noncoherent FSK system was tested in a Ray-
leigh fading environment, and in another simulation
diversity transmission was utilized to improve performance
in the fading channel. In all cases the systems being
simulated were chosen so that the mapping from the SNR
to PE could be analytically determined. This was done
so that PE could be estimated using the SNR estimate for
comparison with a direct count of the errors produced
by the system.

In order to provide a somewhat realistic simulation
of the actual system in each case, additive white Gaussian
noise was combined with the signal in the channel, and
the signal-plus-noise was filtered by a predetection
filter. This procedure allowed unknown group and phase
delays to be introduced by the predetection filter, and

the SNR estimation routine for bandpass systems was




e

required. Some carly attempts to use the lowpass ver-
sion of the estimator showed SNRMSE to be completely in-
adequate with such systems as, of course, would be
expected.

There is one theoretical problem that results when
filtering the signals in this manner which should be
mentioned. The theoretical mapping from the SNR to PE
is generally developed under the assumption that the
only errors present in the noisy waveform are those pro-
duced by the additive random noise. The signal is usually
assumed to pass through the predetection filter without
distortion. 1In practice, the filter generaully distorts
the signal to some degree. The amplitude response of the
filter is not perfectly flat over the passband, and the
phase characteristic is not perfectly linear. Additionally,
there are usually some spectral components of any prac-
tical signal which fall outside the passband, and inter-
symbol interference can become significant. In order to
justify neglecting errors in the mapping from the SNR to
PE due to these effects, a simulation was performeu for
each system with the Gaussian noise set to zero. The
SNR estimator measured errors in the system due to all
sources other than the Gaussian noise. It was determined
in each case that the Gaussian noise error would exceed
all other errors by at least ten dB (and usually much more),
even for the lowest values of Gaussian noise power to be
considered. Hence, the assumption that the total noise

power is essentially the result of only the additive
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Gaussian noise is justified, and the theoretical mapping
from the SNR to PE is applicable. To further substantiate
these arguments, additional simulations were pertormed
for the coherent ASK and FSK systems in which the Gaussian
noise was first bandlimited by a tilter identical to the
predetection filter before adding it to the signal. Then
the predetection filter was removed from the signal path
altogether. The results of these simulations are tabulated
and plotted with the other results for the coherent ASK
and FSK systems. It can be seen that there is no notice-
able difference in the accuracy obtained with the two con-
figurations.

Block diagrams of the simulations used for the coherent
ASK system are shown in Figures 22 and 23. The modulation
source utilized to provide input symbols to the binary
ASK modulator was a PN sequence generator producing pseudo-
noise symbols in a sequence with a period of 1023 symbols.
The ASK modulator performed on-off keying of a carrier.
In one case, white Gaussian noise was added, and the
noisy waveform was passed through a bandpass predetection
filter. In the other case, the same filter was applied
to the noise before it was added to the signal, and the
signal was not passed through a filter. 1In both cases,
the output was provided to a coherent ASK demodulator and
to a PLL which tracked the carrier component and provided
a phase reference for the coherent demodulator. The de-
modulated symbois were compared with the original modula-

tion symbols, and the errors which occurred in operating
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the system were counted. Dividing the number of errors
by the total number of symbols processed yields an
estimate for the probability of corror obtained by a
airect count, PE(Count).

Data were collected at the input to the demodulator
where an estimate of the SNR was desired. Data were also
collected at the modulator output to serve as the reference
signal. Subroutine SNRBPS formed the SNR cstimate for the
waveform at the demodulator input. From this estimate, S&R.
an estimate can be obtaine¢ for the ratio of the average
energy per transmitted symbol, Es' to the noise power spec-
tral density, NO. Then the well known mapping from ES/N0
to P.. for a coherent binary ASK system operating in addi-

E

tive Gaussian noise, [69]

1 /1 E%
pE =3 ertc 3 N (60)
0
where
o * 2
erfc(x) = =— J e % da
e

can be applied.

In order to find ES/NO from the SNR, denote the
time duration of an information symbol by TS and the
average power present in the signal at the point of mea-
surement by PS. Then the total average energy per symbol

is given by

Y7 VOSSOV LT SR ITPRE R Y TR
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Denote the noise-—equivalent bandwidth of the filter by
Bn' Then, the total noise power present at the point
of measurement is given by Nan’ Thuss, the SNR at the

point of measurement can be written

Ps Es
SNR = = o,
Nan NoTan
Therefore
Es
ﬁ; = (SNR)(TSBn)

Hence, the ratio ES/N0 is related to the SNR by a pro-
portionality constant which is the time-bandwidth product

of the system. The relation for PE becomes

p = 3 erfc f%(SNR)(TSBn) . (61)

N~

Inherent in the theoretical development of this map-
ping is the assumption of a perfect phase reference in
the coherent detector. Although the phase reference pro-
vided by the PLL is not perfect, the phase error variance
was measured for each simulation and was found to remain
below 0.03 radian2 throughout. Hence phase errors may
reasonably be assumed to be quite small, and the mapping

based upon a perfect phase reference should yield a very




124

close approximation to the correct napping for the system

being simulated.

Simulations were pertformed for this system over g

.

3‘3‘{ range of SNR values where a direet error count was feasible.
b

i—’ The various system parameters utilized are tabulated with

€

2 the results of the simulations in Appendix E. A plot ot
; the results is shown in Figure 24. Points are plotted
.y showing the relationship between the estimated SNR and

the error probability obtained by a direct error count.
Every data point represents the results of a different
simulation. For each point, the value of the abcissa

is the SNR estimate scaled by the time-bandwidth product,

(SNR)(TSBn), expressed in dB, and the value of the ordinate

is the probability of error computed by a direct error
count for that same simulation. The number of svmbol
errors that occurred in each case is shown next to the
point in order to reflect the reliability of the PE
estimate obtained by direct error counting. The curve
snowing the theoretical mapping from the SNR to PE is
plotted for comparison.

The distance along the ordinate between cach point
and the curve is the error in estimating the probability
of error for that simulation that would result if PE were
determined by estimating the SNR and mapping this to an

estimate for PE. Inspection of the plot shows good agree-

{. ment between the PF estimates which are found using the
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SNR e¢stimation routines and the results obtained by direct
error counting. In all cases where more than five errors
wore made, so that the errvor count may be consi dered mean-
ingful, the values obtained tor the probability of error
by count ing and throupgh SNR estimation dittfer by less
than a factor ot 1.3. This level of accuracy is more

than adequate in most applications where an estimate of
PE is required.

An important point about the data required to produce
the estimate for PE using the two techniques should be
made here. Each ASK simulation processed a total of 30,700
samples to simulate the 1023 information symbols used. All
these data were used in finding the probability of error
by direct error count. The SNR estimate was produced
using only 20,000 of these samples. Applying the mapping
from the SNR to PE for the system provided an estimate for
PE. Thus the simulation time required for this case could
be reduced by more than one third with no change whatsoever
in the PE estimates obtained through SNR estimatior. Fur-
ther, all the tests which have been performed to check
the accuracy of the SNR estimator indicate that SNR estim-
ates could have been obtained with only 10,000 samples,
or even less, which would probably differ from the
estimates actually obtained by no more than a few tenths
of a dB. It seems likely that good PE estimates for this
system could have been obtained through SNR estimation

for one third or less the cost in computer time which was
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used. Similar results should be possible for other sys-
tems which can be accurately simulated, providing the
mapping from the SNR to PE is Kknown. In the cases of

the lower error probabilities obtained, such a reduction
in simulation time would provide an insufficient number of
errors to yield a reliable estimate of the error prob-
ability using a direct error count. This sort of reason-
ing was experimentally verified in the FSK simulations
which are discussed next. The PE estimates obtained
through SNR estimation in those (FSK) simulations are
formed using well under one half the data used for the
direct error counts. The agreement between the results
and the theory is even better for the FSK simulations than
it is for the ASK case.

The importance of these arguments is obvious when
the extension to estimates of PE in ranges several orders
of magnitude smaller are considered. For the same number
of samples, the reliability of the SNR estimate is
almost unchanged as the SNR is increased approximately
ten dB in most systems to obtain this extension. This
is seen in the tests of the estimators and in the confi-
dence intervals which were derived in earlier sections.
For these higher values of the SNR, a given error in
S&R generates an error in the estimate for PE larger than

at low values of the SNR. A brief study of this effect

is given in Appendix ¥. The filtered noise test results

obtained in the previous section show that the SNR
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estimates are usually accurate to within a few tenths of
one dB. In most digital systems, these measurements would
lead to PE estimates well within one order of magnitude

of the theoretical value. This accaracy is sufficiently
adequate to provide a useful estimate of PE in most appli-
cations. The computer time required to estimate PE using
direct error counts in this range usually eXxceeds prac-
tical values by a few orders of magnitude, since, for

a given value of PE, the expected number of errors
generated is directly proportional to the simulation time

used.

Thus, the SNR estimation technique for determining

PE is directly verified, at least over the range of PE
shown in the plots. There appears to be no reason why :
the method should not also give good results for the ‘
lower ranges of PE typical in most practical systems.

A similar simulation scheme was used to model a
binary coherent FSK communication system. Block diagrams
for the FSK system are given in Figures 25 and 26. The
configurations are similar to those fcr the ASK system
except for minor changes. The ASK modulator and demodula-
tor are replaced by an FSK modulator and demodulator.
Also, two phase-locked loops are required instead of
one to supply phase references to the coherent demodulator.
Again, a PN sequence is used as a modulation source.

A single predetection filter is used with sufficient

bandwidth to cover both frequency channels. The use of




A AR TR T @ e -

- -
v T P S T it b A i iy s

m. 19114 uorinalapirdad e 3uls( WH1SAQ NQ4 USIBYO) HYY JO uormpnulg 67 aandt
AMCDCQ d » ’
0)%d UNS
SUOHYa
—P Todaiis
| LNNOD
|
: .
| — Sdayuns
w ;
|
Z l
W T1d T1d
| v v
w
w HOLY1140KId
AWLr. %54 HAL 114 YOLVINAON
sToqlAg LNAYTI0D NOILDILIATHd uSd
paiel
-npowa(]
104N0S 304N0S
1S ION NOI.LVINAOK




B

130

191714 UOT108319Pald ¥ INOYUITH wa3SAS JSA IULBIBYOD 8Y} JO UOTIBTNWTIS

(3unoo vmu»

—>

syoyyld
TOHRAS
LNNOD

UNS

TR T

‘02 9an3tyg

{

(4 ¢
T1d T1d

v v

w‘onsmm

pajenpoua(q

HOLVINAOKId

Jsd ¢

LNIYTHOO

SdgUNS

J0¥Nos
ISION

HOLVTNAON
ASd

HALTIA
SSVdaNvd

JoUNnos
NOILVI1dON




v

131

two filters with narrower bandwidths, one for each fre-
quency channel, would yield a system with performance
superior to that of the one simulated, since the SNR for
each channel would be improved. However, this change
would have no significant effect on the validity of the
tests of the SNR estimator. It would introduce the prob-
lem of matching the possibly different delays in the two
filters to obtain the synchronization necessary at the
end of each symbol time when a decision must be made
about which symbol was sent. Also, the equivalent con-
figuration which avoids filtering the signal, as shown

in Figure 26, could not be so directly simulated using
the version with two filters. Therefore, for convenience,
the single filter was chosen.

Simulations were performed over a range of SNR values
as was done for the ASK case. System parameters and re-
sults are given in Appendix E. A plot is drawn just as
before to show the -elationship of the SNR estimates,
the probability of error determined by direct error count,
and the theoretical mapping between the SNR and PE. The
theoretical mapping is identical to that given by (61)
for the coherent ASK system [10]. These results, shown
in Figure 27, indicate excellent accuracy in the SNR
estimator. In this case the phase error variance re-
mained below 0.04 radianz, indicating nearly perfect
coherence. The values obtained by the two methods for PE
again differ by less than a factor of 1.3, except in cases

where less than five errors were counted.
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Discussion of the accuracy of the methods developed
to evaluate the pertformance of digital communication sys-
tems is most directly accomplished by considering the
error in estimating the probability of crror. For
example, in the ASK and FSK systems discussed, the varia-
tion between the probability of error obtained by direct
error counting and the PE estimate obtained through SNR
estimation was noted to be less than a factor of 1.3
in all cases where more than five errors were counted.
But the accuracy of the SNR estimator is most easily
described in terms of the error in the SNR estimate,
not in terms of the error generated in the PE estimate.
It is useful to have a set of curves available which
maps the error in the SNR estimate to the error in the
PE estimate. Such a mapping is obviously system depen-
dent and cannot be obtained in general. However, the
case of coherent systems operating in additive Gaussian
noise is quite common, and it is helpful to derive curves
for these systems. In Appendix F curves are obtained
which cover some of these systems, and a convenient way
of expressing the error in estimating PE is suggested.
The data obtained from the coherent ASK and FSK simula-
tions is plotted with the curves to show the area in
which these simulations were operating.

The next system which was simulated is a noncoherent
FSK system. The simulation is the same as that for the

coherent FSK system except for the form of the demodulator
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and the fact that the phase-locked loops are not required.

A block diagram is shown 1in Figure 28. As before, a PN
sequence serves as the modulation for the system.  After
white Gaussian noise has been added, the noisy waveform
is input to a predetection filter. This tilter is follow-
ed by the noncoherent demodulator, which consists of two
bandpass filters and envelope detectors together with
a decision mechanism for decoding each symbol. Also in-
cluded in the demodulator is a delay in one of the two
signal paths, which serves to match the slightly different
group delays of the two bandpass filters.

It is worth mentioning that the group delays imposed
by these filters were determined experimentally using
the group delay estimation feature of SNRBPS. These delays

must be found by some technique so that the signals along

the two paths are synchronized before decoding each
symbol. The routine chiefly intended for SNR estimation
in simulations of bandpass systems provides a convenient
means for making such delay measurements.

The predetection filter is included mainly for con-
venience in measuring the SNR over the portion of the
spectrum where the system is operating. It is possible
to compute this quantity through wideband measurements
of noise power taken at the noise generator output before
filtering by applying knowledge of the noise spectrum
generated. However, 1t was praferred tc directly measure

the power in the frequency band occupied by the signal.
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Assuming the predetection filter passband includes the
passbands ot the individual filters which tollow, as

it must for proper operation, the performance of the
system 1s essentially the same whether or not the pre-
detection filter is used. Without it. however, the signal-
to-noise ratios would have to be measured at the outputs
of the demodulator bandpass filters. This presents a
problem in determining a reference signal because each fil-
ter passes frequencies corresponding to only one of the two
information symbols. In order to measure the SNR at the
output of one of the demodulator filters, a special ref-
erence signal would have to be generated corresvonding

to the theoretical output of that filter. This might be
possible, but the predetection filter approach appeared to
be simpler. Since the quantity to be determined is

ES/NO. the calculation is performed just as in every other
case, multiplying the SNR by the time-bandwidth of the
filter involved, in this case the predetection filter.

Once ES/NO is found, the expression [71]

T

S

N
0

t2

can be used to estimate PE.

The results of simulations performed for the system
are tabulated in Appendix E, and results are illustrated
in Figure 29. Once again, the results appear to be in

rather good agreement with theory, and the SNR estimator

is shown to be capable of producing good estimates for P

B
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Values for the probability of error derived using the
two methods differ by less than a factor of 1.5 in all
cases for simulations of this system.

In the next set of simulations, the same noncoherent
FSK system was used. However, the channel model included
a multiplier for the signal which simulated Ravlicigh tad-
ing. A block diagram for the system is shown in Figure
30. The tap for the reference signal for SNRBPS is taken
at the output of the random gain multiplier. The SNR
value which is required to compute PE for the system is
based upon the average symbol energy after the Rayleigh
fading. If the reference for SNRBPS were taken at the
output of the FSK modulator, all error produced by the
variations in signal amplitude due to fading would be in-
cluded as noise in the SNR estimate.

The Rayleigh random variable used to simulate fading
was generated as the square root of the sum of the squares
of two independent, equal variance Gaussian random vari-
ables. In order to achieve an intuitively appealing model
for the fading, it was desired that the fade durations be
long enough so that the signal amplitude would remain more
or less constant over the width of a single information
symbol. Yet the duration was required to be sufficiently
short that several fades would be included in a single
FFT block size suitable for use in the SNR estimation
routine. Otherwise, the stationarity assumptions required

of the signal for proper operation of SNRBPS would be
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violated. The adjustment of fade duration was performed
by controlling the spectral content of the independent
Gaussian random variables utilized. Independent Gaussian,
equal variance random variables were used as inputs to
two identical bandpass filters. Since the two filters
are linear systems, the outputs remain Gaussian. Thus
two independent Gaussian random variables of equal variance
were available at the filter outputs at each sample time
to form a Rayleigh distributed random variable. The
approximate duration of the fades was coatrolled by iden-
tical adjustment of the two filters. The desired fade
duration was achieved by experimenting with the filters
and observing the results. Statistical tests were per-
formed to verify the independence of the Gaussian random
variables between the two filter outputs and to verify
that the distribution of the final random variable
generated was a good approximation (¢ a Rayleigh distfi—
bution.

The value of P for the Rayleigh fading channel is

E
given by [72]

where Es is the time-averaged symbol energy present at
the demodulator input and No is the powe" spectral density
of the white Gaussian noise. This mapp ng was used to

obtain estimates of PE from the SNR estimates. A large
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number of fades were included in the data stream used to
compute the SNR, so that an accurate value could be ob-
tained for the time-averaged symbol energy. A table of
the results of these simulations is given in Appendix L.
A plot similar to those described for the other syvstems
is given in Figure 31. The PE values obtained by SNR
estimation and by direct error count differ in all cases
by less than a factor of 1.2. Once again the SNR esti-
mation routine appears to be extremely accurate.

In the final simulations performed for digital
communication systems, a diversity transmission system
was simulated to combat the Rayleigh fading channel. It
was assumed that a number of independent Rayleigh channels
having identical statistics were to be utilized. Spatial
diversity was actually simulated, although the results
would theoretically be the same if the system employed
time or frequency diversity, as long as the assumptions
of independence and identical statistics remain valid.

The modulation scheme employed was noncoherent FSK.
The system configuration for each spatial channel was
identical to that of the single channel system just de-
scribed in the previous simulations except for the decision
mechanism in the demodulator. In order to decode a symbol
in the diversity system demodulator, first the outputs
of the two envelope detectors in each binary channel are

squared. Then the squared outputs corresponding to the

same symbol in each channel are summed over all the channels.
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Finally the larger of these two sums is chosen to define

the decoded output symbol. The structure of this system

is illustrated in Figure 32.
The effects of diversity transmission can be seen *

by assuming a given amount of energy 1s available for

each modulation symbol. Holding this total symbol energy

AU L Y e

constant, system performance is observed as the energy
is divided among an increasing number of independent
channels. This procedure was followed in the simulations

performed. The value of PE in this system is given by

[73] '
L-1 . .
+ i i
P, = pt § (LHi-l (1-p)? i
L& J ;
j=0 i
where
_ 1
: p = _
Eq
= 2+ |In
B L = the order of diversity

and ES and N0 are as defined earlier, but remembering
that ES represents the total energy summed over all the
channels.

In these simulations the ratio ES/NO was to be fixed

at 15 dB. The SNR was estimated for only one channel.

——e ———p

It was assumed that the other channels were operating

at the same SNR. Each order of diversity from one through
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four was simulated. In each case data were collected from
one channel to estimate the SNR, and a computation was
performed to obtain ES/NO. The value was held close to
15 dB for each order of diversity by using the SNR
estimator to check performance. The number of errors
which occurred in each case was used to obtain the proba-
bility of error. The results are tabulated in Appendix
E. A plot was constructed showing the value obtained

for the probability of error at each order of diversity.
A curve was drawn indicating the theoretical value of

P; for each order of diversity, assuming that 'ﬁs/n° is 15
dB. Of course, the curve is only defined for a practical
system at integer values of diversity. The plot is given
in Figure 33. The results again are quite good. For
diversities of orders less than four, the values of PE
miss the theoretical curve by less than a factor of 1.1.
In the fourth order diversity system, the factor is about
1.7.

In this case the SNR estimation routine was not
utilized in order to measure an unknown but fixed simula-
tion. Rather, the routine was used to measure the SNR
of a simulation to maintain the desired SNR specification
for the system. Adjustments of the noise were checked
using SNRBPS until the desired SNR was achieved. The
SNR estimation routine appears to have been accurately
monitoring the SNR, since the number of errors that

occurred are in good agreement with the theory. This
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particular application demonstrates another way the SNR
estimation routines may be helpful in evaluating the
performance of a communication System through computer

simultation.
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VIII. CONCLUSION

As digital computer simulation has begun to play a
major role in the analysis of many systems, it has been

seen that a general criterion for pertormance cvaluation,

which is suitable for use in digital simulation, is needed.
In many cases a useful criterion is the mean-square error
between a measured waveform and some reference. In other
cases some other figure of merit for a system can be de-
rived using the mean-square error. In conjunction with

measurements of power, the mean-square error can be used

to define signal-to-noise ratios for arbitrary waveforms,
where the error is considered to be noise. Other param-
eters of general interest, such as system gain and system
delay, can be defined by using measurements of the mean-

square error or the signal-to-noise ratio.

In this work, methods were developed for estimating
all these quantities in simulations of lowpass and bandpass
systems. The technique requires that a reference waveform
be available which differs from the ideal signal component
of the waveform at the point of measurement only by an
unknown scale factor and, in the lowpass case, by an un-
known time delay. In the bandpass case, both group and
phase delays can be arbitrary. The method can be applied
to digital simulations of any wide-sense stationary system
where this reference is available. The measurements of

power, gain, delay, and signal-to-noise ratio find many
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applications in simulations of both analog and digital
communication systems.

In order to obtain these estimates, a method was
developed to determine the amplitude scaling and the
group and phase delays that must be imposed on the ref-
erence to form a signal estimate which minimizes the mean-
square error with respect to the measurement waveform.
Two software implementations were developed. One is for
the case where group and phase delay are equal, which means
the signal'estimate may be formed by simply amplitude
scaling and time-shifting the reference. This case is
usually associated with lowpass linear systems. The other
implementgtion, which allows for arbitrary group and phase
delays, reflects the processing generally encountered in
bandpass linear systems. Both of the SNR estimators were
proven to be ML estimators in systems with additive white
Gaussian noise. Curves showing confidence intervals were
developed for the lowpass SNR estimator in this case.
These curves indicate that excellent SNR estimates can
usually be formed using data sets of a practical size.

Development of confidence intervals for the bandpass
estimator proved to be too complicated for simple mathe-
matical analysis. Further work could be done in deriving
such curves. It would be helpful to have a more thorough
statistical study of the estimators. It may be possible
to determine whether the estimators are ML for channel

models other than the additive white Gaussian channel, and
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confidence intervals would be useful for these channels,
also.

The SNR estimators were first tested in applications s
to analog systems. Results obtained from simulations of
a filtered noise system and a more complex FM communi-
cation system indicate that accuratr cstimates can be
obtained for a wide range of signal-to-noise ratios. In
some cases, the SNR estimator is useful in checking the
validity of the simulation itself. For example, in the
F¥ system which was simulated, the SNR measurements helped
to verify the proper operation of the PLL demodulator

simulation model.

A survey of the technlques currently available for

hevaluatlng the performance of digital communication sys-

tems through the use of computer simulation revealed that
the methods generally in use are not suitable for evalua-
tion of most practical systems. The parameter most often 3
desired in evaluating these systems is the probability of §
symbol error, PE' The estimation of PE based upon count- 3
ing the errors which occur, or extensions of error counting
techniques, require too much computer time to be feasible
for values of Py less than about 1073 which are typical
in most systems.

In many cases a mapping from PE to the SNR at some
point in the system can be found, or at least approximated,
using either mathematical analysis or empirical data. In

such systems, PE may be estimated through the measurement
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of the SNR. In some cases the SNR itself is a useful

T INEE - ¥

parameter for evaluating performance.

The technique developed for SNR estimation was
applied to simulations of a variety of digital communica- ;
tion systems. Estimates of PE obtained through SNR mea-
surements were compared with results obtained by direct

error counting. The tests directly verified that accurate

Are

estimates for PE can be formed using the SNR estimators
over the range of the SNR associated with error probabili-

ties where error counting is feasible. Since measurements

can be accurately made for a much higher range of the SNR,
all indications are that accurate estimates for PE can be

found over ranges of PE where the error counting methods

cannot be applied successfully.

i .f:"f“"‘fi';lw,ég,_u..,,,,,. ORRINS ob i}

In short, the results of all tests show that the SNR
estimation methods developed accomplish their task quite
well. Accurate measurements have been obtained for a

wide range of signal-to-noise ratios when applied to

BT TP 1Y ¥ T2

simulations of both digital and analog communication sys-

tems. The accurate estimation of P has been directly

E

verified for error probabilities greater than 10—3 through

simulation. In almost all cases the probability of error
was estimated to within a factor of 1.5. It seems

accuracy similar to this should be expected for the much

smaller values of PE common in most practical systems.

The accuracy of the PE estimate would be decreased slightly

in many cases becuase, as the SNR increases, a given error
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in the SNR estimate usually produces larger errors in the
estimate for PE.

The method is economically feasible. The amount of
computer time required to determine an SNR estimate for

~

producing a PL estimate of l()—b is essentially the same

v
g

-

as for producing a PE estimate of lO—J, since the require-
ment on computer time is only a function ot the number of
samples being processed. The various measurements for
delay, gain, and correlation which are generated in the
process are often helpful, also.

The techniques developed seem to offer a versatile
tool for the accurate quantitative evaluation of many dif-

ferent systems through the use of computer simulation.
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APPENDIX A

SUBROUTINE SNRMSE

Subroutine SNRMSE is a FORTRAN IV implementation of
one of the SNR estimators developed for use in computer
simulation. It 1is applicable to systems where the group
and phase delays of the measurement data with respect to

the reference data are equal. These are usually, but

not necessarily, lowpass linear systems. For proper
estimation of delay, the data should be wide-sense sta-
tionary.

The measurement data set of K samples is input to
the routine in the Y array, and the X array contains the
reference data. Included in the argument list are the
various work arrays and dimension values required and
input parameters to specify various processing options.
These inputs include the choice of the FFT block size to
be used, whether an initial delay estimate is to be deter-
mined by the routine or specified in the argument list,
the choice of the number of iterations to be performed in

choosing the final delay estimate, whether to apply a data

window, and whether the cross-correlation function is to be
printed, plotted, both or neither. All the arguments of
the subroutine are listed with explanations in the comments
at the beginning of the program listing which is included.

The execution of SNRMSE does not destroy any of the

input data. Thus mvltiple calls of the routine or succes-

sive processing of the data set by other routines is
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possible. The routine provides a printout of estimates

for power in X, power in Y, system gain, system delay,
the peak of the cross-correlation function, normalized

mean-square error, and the SNR estimate expressed in dB.

Most of these values are also returned in the argument
list so that they may be used in any successive process-
ing. Also printed are a list of the values of the input
parameters in effect upon execution of the routine, the
normalized cross-correlation values used to select the
final delay estimate, and the means and variances of the
FFT data blocks which weré computed in testing stationar-
ity.

If any stationarity tests were failed, a warning

message is printed to that effect. The tests are made

by computing the mean and variance of each FFT data block

and comparing these values with those of the entire X

or Y data set. If a value outside a certain experimentally

= chosen range is found, the warning is generated. To aid
; in locating the problem which generated this warning,

immediately following the warning an output of the form

IFLAG = I will be printed, where I is a signed integer.
The magnitude of I indicates the number of the FFT mea- -
surement data block which caused the warning, except that

a value of 10,000 denotes the reference block. A minus

sign indicates a variance test was failed. Otherwise,
e a test of the mean was failed. If more than one test was

failed, only the last failure which was detected is

T e
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indicated by IFLAG. A warning statement does not neces-
sarily mean that the results are in error, only that the
stationarity is questionable. This often causes the
delay estimate, and hence the other results, to be
erroneous. If the correct delay value has been found in
spite of the nonstationarity, then the results arc all
valid.

The subroutines CORR, GRAPH, and DATAPT, which are also
listed, are called by SNRMSE and require no attention by
the user, except that they must be available to SNRMSE.

The subroutine CORR is used to obtain the cross-correlation
function, and GRAPH and DATAPT are used to graph this
function if specified. Also, the FFT routine HARM must be
available for use in SNRMSE.

One parameter which needs some explanation is ISIGNR.
This input specifies whether the cross-correlation peak
to be found in determining delay is to be positive, nega-
tive, or the largest absolute value computed. For most
cases the user should specify ISIGNR = 0, indicating that
the absolute value peak is to be used, and the routine will
execute properly. Only for a special class of signals
does the user need to specify whether a positive or nega-
tive peak is required. If the signals being analyzed
possess the proper symmetry such that the cross-correlation
function theoretically has equal magnitude positive and
negative peaks, then the user must specify which sign is

to be used in order to obtain correct delay estimates.
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This would be the case for signals with half-wave sym-
metry. It should be noted that in such cases the esti-
mates for the SNR, power, and error are valid regardless
of the specification chosen for ISIGNR. Only if the user
is concerned with delay or gain estimates in a system
with theoretically equal magnitude positive and negative
cross-correlation peaks, does ISIGNR need to be specified
as 1 or 0. 1In such a case, a 1 should be used if the
system gain is positive, and a -1 should be used if the

system gain is negative.
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APPENDIX R

COMPARISON OF DATA WINDOWS FOR USE IN SNRBPS

Initial testing of the Hamming data window for use
in SNRBPS showed that a significant improvement in the
accuracy of results could be realized compared to
processing without applying the window function.

These results prompted further testing of a variety of
data windows.

The tests were made using a double sideband signal,
specifically a product of sinusoids. Amplitude scaling
and delays were programmed into the measurement signal,
and additive Gaussian noise was applied. Tests were
made for SNR values of 17.7 and 36.9 dB and for a very
large value, which was too great to be measured accurately
by the routine. Results are tabulated in Table V. Seven
windows, in addition to rectangular, were tested.

The results show all windows used work well for the
lowest value of the SNR. At 36.9 dB, many window func-
tions yield very poor results. Two Kaiser windows, the
Hanning window, and the triangular window all remain
within one dB of the correct SNR value. For the
extremely high SNR test (on the order of 70 dB), results
are not tabulated, since no accurate measurements were
obtained. However, the Hanning window provided an
estimate in excess of 60 dB, which was more than 5 dB
greater than any other window. On the basis of these

results, the Hanning window was tentatively chosen for

kil

TR R e
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TABLE V

RESULTS OF TESTS OF WINDOW FUNCTIONS

Window SNR Estimates
Function True SNR True SNR
= 17.7 dB = 36.9 dB
Rectangular 16.4 22.1
Blackman 17.4 30.0
Kaiser, 6 = 17.5 30.8
Kaiser, 6 = 3n/2 17.7 36.3
Kaiser, 6 = 27 17.9 37.6
Hamming 17.7 34.8
Hanning 17.7 37.6
Triangular 17.8 37.4

B e e ]

TR TI A X PR g
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use 1n SNRBPS. Subsequent testing verified the overall
accuracy and reliability of estimates 1ormed using this
window on many different signals. Therefore, the

Hanning window was permanently installed in subroutine

SNRBPS for the data window processing option.
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APPENDIX C

SUBROUTINE SNRBPS

Subroutine SNRBPS is a FORTRAN IV implementation

of the second SNR estimator developed for use in computer
simulations of communication systems. It is applicable
to systems where the group and phase delays of the mea-

surement data with respect to the reference data are

ek R e s it

arbitrary. These arbitrary delays are associated with
bandpass systems. The routine will yield valid results

only with signals which carry all information in the

e e ae e o Ey s R iEE L et e .

3
envelope of the waveform. In such cases only the enveiope %

g e
of the signal is required 'v be distortionless to retain i
all the information; delav of the carrier itself is un- v

important. The routine should be applied to systems

AR AL L o) |

having some carrier frequency displaced from zero. For
proper estimation of group delay, the data should be wide-
sense stationary.

Input to the routine is essentially the same as for
SNRMSE. The delay included in the argument list refers
to group delay. There is an additional input parameter
for SNRBPS which can be used to limit the maximum delay
value to be considered in estimating group delay for the
system. All the arguments for the subroutine are listed
with explanations in the comments at the beginning of the k'é
program listing which is given.

Like SNRMSE, the execution of SNRBPS does not destroy

any input data, so successive processing of the data sets
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is possible. Outputs provided by SNRBPS are identical to
those of SNRMSE with three exceptions. The delay value
given denotes group delay. (No phase delay estimate is
produced.) The peak of the envelope of the cross-correlation
function .s provided, instead of the peak of the
cross-correlation function itself. Finally, magnitudes
of normalized cross-spectral power estimates are printed
instead of normalized cross-correlation values, since these
power measurements are used in estimating group delay.

Stétionarity tests are applied and warnings generated
exactly as in the lowpass routine. The subroutine CORR2
js listed following SNRBPS. It is called by SNRBPS to
compute the cross—-correlation function, and it reguires
no attention from the user. In addition to CORR2, sub-
routine SNRBPS requires GRAPH and DATAPT, which have al-
ready been listed with the lowpass routine, and the FFT
routine HARM. Actually, subroutines GRAPH and DATAPT are
only used in either routine when a plot of the cross-
correlation function is requested. Many FORTRAN compilers,
however, require that the routines (or a dummy routine
named GRAPH) be available in order to properly compile
SNRBPS, which contains a calling statement for GRAPH.
Similarly, CORR and CORR2 are only executed in their res-
pective routines if a delay estimate is to be found by the
routines in forming the SNR estimate.

The input parameter ISIGNR indicates whether a positive,

negative, or an absolute value peak is to be found for the

R P T BT W




cross-correlation function to select the general region
where a search is performed to determine group delay. The
discussion given in Appendix A for SNRMSE explains the
effect of ISIGNR on the search of the cross-correlation
function. However, system gain is always considered to be
positive in the bandpass case. The phase delay may be
changed by 180° to provide sign changes. Therefore, in
normal use, the user should always specify ISIGNR = O,
indicating the absolute value peak is to be found.

' Ia some cases, signals may be analyzed where it is
known that theoretically equal magnitude positive and nega-
tive cross-correlation peaks exist and that either peak
would lead to a theoretically correct group delay estimate.
A simple example of this is the sinusoidal modulation of a
sinusoid used as a test signal for SNRBPS in the section on
application to analog systems. It is preferable to use the
smallest theoretically correct delay value available, since
this procedure yields estimates based on the largest num-
ber of samples. 1f the user knows a positive cross-correla-
tion peak will occur for the smallest theoretically correct
delay, it is helpful to specify ISIGNR = 1 to increase the
likelihood of selecting this delay. Similarly, ISIGNR =
-1 can be used if a negative peak is known to occur for the
smallest theoretically correct delay. This procedure 1is
occasionally useful, but it is entirely optional. The
user may specify ISIGNR = 0 in all cases and obtian valid
results. The option simply allows the user to obtain more

reliable estimates in a few special cases.
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APPENDIX D

NOISE-EQUIVALENT BANDWIDTHS FOR THE DIGITAL FILTER

For the purpose of computer simulation of communi-
cation systems, a general lowpass and bandpass bilincar-
Z digital filter was destigned with variable order and
critical frequencies. For various filter orders and
a range of values of the filter critical frequencies,
noise-equivalent bandwidths of the filter were measured
using a time domain technique. A comparison was made
between the noise-equivalent bandwidth of the lowpass
digital filter and that of the corresponding lowpass
analog filter.

The filter was designed by first determining the
transfer function of the Butterworth analog filter with
the desired cricical frequencies. Then standard bilinear-
7 techniques were applied to obtain the correspond-
ing digital filter. The filter was scaled so that
HMAX’ the maximum magnitude of the filter transfer func-
tion, was equal to unity.

The method used to measure the noise-equivalent

bandwidth of the filter is based upon Parseval's theorem,

which states that [74]

-

® (
[ IH( )| 2at =J h2(t)dt

- 00 - a0

where H(f) is the transfer function of the filter and

h(t) is the impulse response. Since the filter is

O O S P -
R T L T N T T



The value of K required depends upon how rapidly
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causal, h(t) = 0 for t <« 0, and

f IH(t)]%4r = j h?(t)at. (62)
-00 0

By definition of BN

, the noise-equivalent bandwidth,
(75]

o

2
By = —1- f [H(f)|%ar = 2;
n
MAX 'O

a0

3 [ lH(f)lz df.
MAX %

Since Htax has been scaled to unity,

By = 2 ] [H(2)|2ar.

(63)
-0f
Substitution of (62) into (63) yields
S N
BN =3 [ h™(t)dt
0
for the noise-equivalent bandwidth,
To measure the noise-equivalent bandwidth, 3 pulse

of unit area was applied to the digital filter. Rec-

tangular integration was used by the computer to obtain

1
BND T2

K
I h2(nT)T
=

where T denotes the time between samples. The integer

K must be large enough to include all significant terms.

the

summation converges,
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Noise-equivalent bandwidths were computed for both

lowpass and bandpass versions having up to 20 poles.

A wide range of critical frequencies were covered, and

a rather extensive table was compiled for usce with the
computer simulations of communication systems. The table
is not reproduced here, since it is only accurate for
this particular software package applied to the 1BM 370.

In order to study the relationship between the noise-

equivalent bandwidths for the analog and digital filters,
an analysis was performed for several orders of the low-
pass filter. The qualitative conclusions are easily
extended to include the bandpass filter.

The noise-equivalent bandwidth of the analog lowpass

Butterworth filter can easily be shown to be [76]

e nf
oo B - 3dB

NA = ZNsin(n/2N)

;% where deB denotes the 3dB frequency of the filter, and

N is the filter order.

Using the expressions for BND and BNA’ a comparison
was made of the noise-equivalent bandwidths of the low-
pass analog filter and the corresponding lowpass digital
filter. For filter orders 1 through 9, tests were per-

formed over the range 0.0015 <R < 0.25, where R is the

3 dB frequency of the filter normalized by the sampling
frequency. The sampling frequency, fs‘ was chosen to
“i, be unity for convenience. Thus, the normalized 3dB

frequency, R, becomes equal to deB; and f3dB is directly

~f¥f applicable to both digital and analog filters.

(T T T TR I AT
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Results are given in Table VI for filter orders q
1, 2, 4, and 8. Curves are shown in Figure 34. It
can be seen that the noise-equivalent bandwidths of
the digital filter are less than those of the correspond-
ing analog filters throughout this range. However, the
difference is small for small values of R. The difference
becomes significant for large values of R and is clearly
more pronounced for filters of low order.
This behavior can be explained by remembering that
the frequency response of the digital filter approaches
zero as the frequency approaches fS/Z. For frequencies
which are very small with respect fo fs’ the response
curves of the analog and digital filters are nearly iden-
tical. For frequencies near one half the sampling
frequency, however, the digital filter frequency response
begins to diverge downward from the analog response. If
deB is chosen so that R is small, the frequency responses
of both filters are very low over the range where this
divergence occurs, and the effect is small. Hence,
BND is approximately equal to BNA for very small values
of R. If f3dB is chosen so that R is large, the fre-
quency response of the digital filter for frequencies
above deB rolls off very rapidly. Thus, it immediately
diverges from the analog frequency response, which rolls
off at the rate of 20N dB/decade. It follows that BND
and BNA are significantly different for large values of

R. A filter of high order has a steeper frequency

response curve than a low order filter. Therefore, a
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TABLE VI

COMPARISON OF

ANALOG AND DIGITAL NOISE-EQUIVALENT BANDWIDTHS

T I
f ,_,,__M;_‘iﬁ_—,_--_,ﬂ_-. [
R = %dB T UN=1 N=2 N=4 N=8
S
0.0015 0.995 1.000 1.000 unstable
0.0050 0.985 1.000 | 1.000 |unstable
0.0150 0.956 0.999 1.000 1.000
0.0500 0.870 0.988 0.998 1.000
0.1500 0.716 0.939 | 0.987 0.997
0.2500 0.637 0.900 | 0.975 0.994
|

All results are rounded to the nearest thousandth.
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greater value of R is required to show the difference
between the values of BND and BNA for a filter of high
order. Exactly these effects can be seen in the plots.
For values of R greater than about 0.25, accurate
results for BND cannot be obtained using the techniques
described because the integration unavoidably becomes
coarse. Fixing the sampling frequency fixes T, which
is the step size for the integration. For values of
R between 0.25 and 0.5, the response, h(t), becomes
large for t slightly greater than zero and decreases very
rapidly to terms of negligible magnitude. Thus, the
sum essentially converges after only a few terms, and
the rectangular integration becomes inaccurate. This
is not usually a problem, since the digital filter is
most often designed to have critical frequencies less
than one-fourth the sampling frequency.

It is apparent that if an accurate value is re-

quired for the noise-equivalent bandwidth of a digital
filter, it is usually necessary to measure that band-
width. Only for high order and high sampling rates do

the well known analog noise-equivalent bandwidths yield
accurate approximations for the digital filter. Hence

in the simulations, whenever a filter noise-equivalent
bandwidth was required, the tabulated measurements were
either utilized directly or used indirectly to interpolate

to the required values of the filter parameters.
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APPENDIX E

DATA FOR COMMUNICATION SYSTEM SIMULATIONS

This appendix contains tables of data collected
in performing simulations of both analog and dipgital
communication systems.

Tables VII through XII contain data for the various
cases of the FM communication system simulatiocns. Each
table is labeled with the modulation type., the value
of the deviation ratio and the PLL natural frequency
used, as well as whether a hard-limiter was utilized.

Tables XIII through XVII contain the data which

were obtained from the various digital communication

system simulations. In each table, the particular system

which generated the data is given at the top, followed
by a group of parameters for that simulation. Data
concerning the SNR and the error probabilities appear

last in cach case.
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COHERENT ASK SIMULATION

TABLE XIII

218

Carrier Frequency - 1 MHz
Time-Bandwidth Product (4-Pole Filter) - 2.244
Sampling Frequency - 10 MHz
Number of Symbols Simulated - 1022
Number of Samples Processed A - 30,700
Number of Samples Used to Obtain SNR - 20,000
Run SNR PE(SNR) PE(count) Number | Phase Error
of 2
No. (dB) Errors Var. (Rad™)
1 -4.211] 0.1781 0.1703 174 0.0054
2 -0.69 | 0.0833 0.0875 69 0.0082
3 1.37 } 0.0397 0.0352 36 0.0122
4 4.17 ] 0.00774 0.00783 8 0.0171
5 4.97 | 0.00398 0.00196 2 0.0172
6 -3.1f 0.1485 0.1184 121 0.00910
7 0.46 | 0.0572 0.0470 48 0.0196
8 2.61 | 0.0216 0.0166 17 0.0249
9 5.60 | 0.00217 - 0 0.0219
10 6.48 | 0.000797 -- 0 0.0205
NOTE: Runs 1-5 utilize filtered signal-plus-noise

Runs 6-10 add filtered noise to the signal
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TABLE XIV

COHERENT FSK SIMULATION

i . Frequency for Symbo1l 1 1.00 MHZz
3 Frequency for Symbol 2 1.67 MHz
b 3 Time-Bandwidth Product (4-Pole Filter) - 4.458

] Sampling Frequency - 15 MHz
1 i Number of Symbols Simulated - 1023
R - Number of Samples Processed N - 46,100
Number of Samples Used to Obtain SNR - 20,000
Run SNR PE(SNR) PE(count) Number | Phase Error
of 2
No. (dB) Errors | Var- (Rad”)
1 -7.20 | 0.1782 0.1750 179 0.033 0.03#
2 -3.60 | 0.0816 0.0763 78 0.015 | 0.015
3 -1.47 1 0.0373 0.0381 39 0.010 | 0.011
4 1.50 | 0.00605 0.00196 2 0.006 0.008’
S5 2.37 | 0.00277 0.000978 1 0.005 | 0.008|
6 -7.41 {1 0.1842 0.1779 182 0.036 | 0.036
7 -3.71 | 0.0842 0.0841 86 0.015 | 0.015
8 -1.52 | 0.0382 0.0313 32 0.009 | 0.009
9 1.51 | 0.00600 0.00599 6 0.004 | 0.004
10 2.40 | 0.00269 0.00269 1 0.004 | 0.004

NOTE: Runs 1-5 utilize filtered signal-plus-noise

Runs 6-10 add filtered noise to the signal
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TABLE XV
NONCOHERENT FSK SIMULATION
WITHOUT RAYLEIGH FADING
Frequency for Symbol 1 - 1.00 MHz
Frequency for Symbol 2 - 1.67 MHz
Time-Bandwidth Product (Predetection
4-Pole Filter) - 6.390
Sampling Frequency - 15 MHz
Number of Symbols Simulated - 1023
Number of Samples Processed - 46,100
Number of Samples Used to Obtain SNR - 20,000
Run SNR PE(SNR) PE(count) Number
No (daB) of
Errors
1 -5.76 0.2141 0.2180 223
2 -2.16 0.0717 0.0850 87
3 -0.02 0.0208 0.0303 31
4 0.94 0.0095 0.0117 12
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TABLE XVI
NONCOHERENT FSK SIMULATION IN

SINGLE RAYLEIGH FADING CHANNIL

A1l system and simulation parameters are identical to
those given in Table XV

Run SNR PE(SNR) PE(count) Number
No. (dB) Er?grs

1 -8.00 0.3319 0.3509 359

2 -2.98 0.1917 0.2190 224

3 2.02 0.0822 0.0958 98

4 4,06 0.0547 0.0499 51

5 6.97 0.0296 0.0352 36

6 11.79 0.0102 0.0978 10

TABLE XVII

DIVERSITY TRANSMISSION IN
THE RAYLEIGH FADING CHANNEL

All svstem and simulation parameters are identical to

those given in Table XV.
maintain (Eq/NO) = 15 dB

Channel noise was adjusted to

Run | Order of |[SNR (dB) 'I‘heo.PE PE(count) Number

No. | Diversity Per at of
Channel | 15 dB Errors

1 1 6.97 0.0297 0.0323 33

2 2 4.06 0.00910 | 0.00978 10

3 3 2.89 0.00448 | 0.00489 5

4 4 1.83 0.00283 | 0.00489 5
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APPENDIX F

THE EFFECT OF SNR ESTIMATION ERRORS ON PE ESTIMATES

When the SNR {signal-to-noise ratio) is estimated at
a point in a particular simulation, errors in the estimate
generally occur. The error, €, in the SNR estimate,

SNR, can be defined by

~

SNR = (1+¢)(SNR) (64)

so that €=0 corresponds to an exactiy correct estimate.
Many times in applications to digital systems, the prob-
ability of symbol error, PE, is estimated using SﬁR. Thus,
the error in S&R produces an error in the symbol error
probability estimate, ﬁE' and it is useful to evaluate the
error in 5E resulting from the error in SﬁR. The sensitiv-
ity of ﬁE to the measurement error, e, is dependent upon
the mapping from SﬁR to ﬁE for the particular system in-
volved.

A number of coherent systems operating in additive

Gaussian noise environments can be studied using a general

mapping of the form
=1
Pp = 5 erfc(/z) (65)

where

erfc (x) = 2 J e da.
m p'S

The quantity z represents the product of a system depen-

dent constant, B, with the ratio of the average energy per
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transmitted symbol, ES, to the noise power spectral density,

No' Therefore, (65) may be written

' E
erfc B-k—g

O

o
[[]
to| -

It was shown in the section cn application to digital

systems that

E

S _

ﬁ; = (SNR)(Tan)

where (T _B_ ) is the time-bandwidth product for the system.
s n

Therefore the general mapping may be written

= 1
P =3

erfc /§T§EETTT;§;T .
This relation may be applied to many communication systen...
If B = % is used, the mapping ijs valid for a coherent bi-
nary ASK or FSK system. With g = 1, the mapping applies
to a phase-reversal keying system (77]. The mapping can
also be applied to a quadriphase phase-shift keying sys-
tem [78].

Since many systems may be represented by this general
mapping, it is helpful to investigate the effect of errors

in SNR on the resulting error probability estimate obtained

using

PE = erfc /gESNR)(TSBn).

o

Substituting from (64) yields

pe————yy

£

=
kg

'z
H

PRI

it o -
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PE = 3 erfc /B(SNR)(TSBn)(l+e).
Noting
Eg
z=8x = B(SNR)(TSBn)
o
yields
Py = :.31— erfc/z(1%6) (66)

which gives a general form for analyvsis. Plots of (66)
are given in Figure 35 for values of ¢ from -0.5 to 0.5.
The curve with €=0 represents the mapping when no error
is present. The distance along the ordinate between this
curve and any other curve is the error in ﬁE which corres-
ponds to the value of ¢ specified. It can be seen that
for large vlaues of z, the curves diverge, and the slopes
of the curves increase. This leads to larger errors in
ﬁE for a given value of ¢ as z is increased. Figure 35
is not particularly convenient for studying the error in
ﬁE’ SO another representation is helpful.

In many applications PE estimates are typically
specified by giving the order of magnitude. For example
P = 0.871x10"7 would usually be simply referred to as
PE=1O-7. Often the order of magnitude is an adequate
specification for PE and for specifying error in ﬁ . Per-

E
centage error measurements are not convenient to use for

-~

specifying the error in PE in most cases. An appropriate

way to specify the error in PE is provided by defining
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Sensitivity of PE Error to Errors in SNR Estimation
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Using tnis expression, y=0 corresponds to PF

il

h)
llf

indicating zero error. Additionally, (PF/PF) = 1Q
yvields y = 1,(PE/PE) = 1/10 vields y = -1, uand
(PE/PE) = 1/100 yields Y = -2, and so on. Thus,

y is the order of magnitude error in the estimate, as
desired.

A plot of y versus lO»LOGlO(z) is giver in Figure
36. This plot illustrates the sensitivity of the error
in sg to the error in the estimate for z. The divergence
of the curves for increasing values of z indicates how a
given value of ¢ produces larger errors in ﬁg for larger
values of SNR. The box shown in thevfigure encompasses
the region where the coherent ASK and FSK simulations were
performed. This region is shown in Figure 37. On this
plot the results obtained in the coherent ASK and FSK
simulations are shown. The direct error counts are used
to define the probability of symbol error, PE. and the
estimate for the symbol error probability computed using
SNR estimation defines QE' For each point where less
than five errors were counted, the number of érrors is
shown next to the point. The data for the simulacions are
tabulated in Appendix E.

It can be seen that excellent results were obtained.

In all cases where more than five errors were counted, so
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that the error count is useful in estimating the error
prnbability. the points remain between oo = ~0. 2 amd

0.1 and correspond to very small values of y. Most
points remain within or pearly within the « = ¢t 0.l
range. Simulation results and the confidence intervals
derived earlier show that the reliability of the SNR
estimator is such that tor higher values of the SNR, the
values of € obtained would usually be approximately the
same as shown here. For errors in the range ¢ =+ 0.1
and values of Pp as low as 10-7, Figure 36 shows that Y
remains between plus and mipus one. Thus . PE estimates
should usually be expected within one order of magnitude
of the correct vlaue, even for PE values as low as 10-7,
when the SNR astimation routine i= applied to 2 system
with this mapping from the SNR to PE. 1t should be
remombored, however, that ftor a system with o different

mapping from the SNR to PF, different curves would result.
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