13 research outputs found

    Tidal disruption events and quasi periodic eruptions

    Full text link
    Tidal disruption events (TDEs) occur when a star passes close to a massive black hole, so that the tidal forces of the black hole exceed the binding energy of a star and cause it to be ripped apart. Part of the matter will fall onto the black hole, causing a strong increase in the luminosity. Such events are often seen in the optical or the X-ray (or both) or even at other wavelengths such as in the radio, where the diversity of observed emission is still poorly understood. The XMM-Newton catalogue of approximately a million X-ray detections covering 12832^2 degrees of sky contains a number of these events. Here I will show the diverse nature of a number of TDEs discovered in the catalogue and discuss their relationship with quasi periodic eruptions.Comment: 7 pages, 1 figure, accepted version for the proceedings of the 'Black Hole Accretion Under the X-ray Microscope' Meeting held at ESAC in June 2022. Publisher : Astronomische Nachrichte

    Evaluation of probabilistic photometric redshift estimation approaches for the Rubin Observatory Legacy Survey of Space and Time (LSST)

    Get PDF
    Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics

    Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)

    Get PDF
    Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing 12 photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time Dark Energy Science Collaboration. By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/underbreadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performance metrics

    Avaliação agronômica de biossólidos tratados por diferentes métodos químicos para aplicação na cultura do milho Agronomic evaluation of biosolids treated by different chemical methods for cultivation of maize

    No full text
    A presença de patógenos e metais potencialmente tóxicos, são as principais limitações do lodo de esgoto para a reciclagem agrícola. Este trabalho avaliou a aplicação de biossólidos, tratados quimicamente, em um Latossolo Vermelho distrófico, na produção de matéria seca e na absorção de nutrientes pela cultura de milho. O lodo de esgoto foi tratado com cal, hipoclorito de sódio, peróxido de hidrogênio, ácido acético e peracético. Nos biossólidos tratados com os ácidos orgânicos fez-se a neutralização com cal. Os biossólidos foram aplicados em vasos, na dose de 50 t ha-1, cultivado com milho pelo período de 55 dias, quando foram determinadas a produção de matéria seca e concentração de nutrientes na parte aérea das plantas. A maior produção de matéria seca foi observada no tratamento com ácido peracético e a menor no tratamento com cal. A aplicação de biossólido aumentou os teores dos macronutrientes na parte aérea das plantas. Os teores de Zn, Cu, Mn, Fe e Pb nas plantas, estiveram abaixo dos limites fitotóxicos. Os biossólidos mostraram ser uma importante fonte de nutrientes para o desenvolvimento da cultura de milho. Os tratamentos alternativos do lodo podem ser eficientes no controle de patógenos e facilitam a reciclagem agrícola de biossólidos.<br>The presence of pathogens and potentially toxic metals are the main limitations for the agronomic recycling of sewage sludge. This study evaluated the application of biosolids, chemically treated in a distrophic Red Latosol in the production and in the absorption of nutrients by the maize crop. The sludge was treated with lime, sodium hypochlorite, hydrogen peroxide, peracetic and acetic acids. Biosolids treated with organic acids were neutralized with lime. The biosolids were applied in pots at a dose equivalent to 50 t ha-1 and maize was grown for a period of 55 days, and later the dry matter production and concentrations of nutrients were determined in the shoots. The highest dry matter production was observed in treatment with peracetic acid (APA) and the lowest in the treatment with lime. The application of biosolids increased the levels of macronutrients in the plant shoots. The concentration levels of Zn, Cu, Mn, Fe and Pb in the plants were below the phytotoxic limits. The biosolids showed to be an important source of nutrients for the initial development of the maize crop. Alternative treatments of the sludge can be effective in controlling pathogens and facilitate agricultural recycling of biosolids

    XMM2ATHENA, the H2020 project to improve XMM-Newton analysis software and prepare for Athena

    No full text
    International audienceXMM-Newton, a European Space Agency observatory, has been observing the X-ray, ultra-violet and optical sky for 23 years. During this time, astronomy has evolved from mainly studying single sources to populations and from a single wavelength, to multi-wavelength or messenger data. We are also moving into an era of time domain astronomy. New software and methods are required to accompany evolving astronomy and prepare for the next generation X-ray observatory, Athena. Here we present XMM2ATHENA, a programme funded by the European Union's Horizon 2020 research and innovation programme. XMM2ATHENA builds on foundations laid by the XMM-Newton Survey Science Centre (XMM-SSC), including key members of this consortium and the Athena Science ground segment, along with members of the X-ray community. The project is developing and testing new methods and software to allow the community to follow the X-ray transient sky in quasi-real time, identify multi-wavelength or messenger counterparts of XMM-Newton sources and determine their nature using machine learning. We detail here the first milestone delivery of the project, a new online, sensitivity estimator. We also outline other products, including the forthcoming innovative stacking procedure and detection algorithms to detect the faintest sources. These tools will then be adapted for Athena and the newly detected or identified sources will enhance preparation for observing the Athena X-ray sky
    corecore