27 research outputs found

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: A pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk ofmajor cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regressionmodels to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction > 5.0×10-8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genom

    GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium

    Get PDF
    Decline in muscle strength with aging is an important predictor of health trajectory in the elderly. Several factors, including genetics, are proposed contributors to variability in muscle strength. To identify genetic contributors to muscle strength, a meta-analysis of genomewide association studies of handgrip was conducted. Grip strength was measured using a handheld dynamometer in 27 581 individuals of European descent over 65 years of age from 14 cohort studies. Genomewide association analysis was conducted on ~2.7 million imputed and genotyped variants (SNPs). Replication of the most significant findings was conducted using data from 6393 individuals from three cohorts. GWAS of lower body strength was also characterized in a subset of cohorts. Two genomewide significant (P-value< 5 × 10−8) and 39 suggestive (P-value< 5 × 10−5) associations were observed from meta-analysis of the discovery cohorts. After meta-analysis with replication cohorts, genomewide significant association was observed for rs752045 on chromosome 8 (ÎČ = 0.47, SE = 0.08, P-value = 5.20 × 10−10). This SNP is mapped to an intergenic region and is located within an accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the CCAAT/enhancer-binding protein-ÎČ (CEBPB) that is implicated in muscle repair mechanisms. GWAS of lower body strength did not yield significant results. A common genetic variant in a chromosomal region that regulates myotube differentiation and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed to uncover the mechanisms that link this genetic variant with muscle strength

    Multiethnic Meta-Analysis Identifies RAI1 as a Possible Obstructive Sleep Apnea-related Quantitative Trait Locus in Men.

    Get PDF
    Obstructive sleep apnea (OSA) is a common heritable disorder displaying marked sexual dimorphism in disease prevalence and progression. Previous genetic association studies have identified a few genetic loci associated with OSA and related quantitative traits, but they have only focused on single ethnic groups, and a large proportion of the heritability remains unexplained. The apnea-hypopnea index (AHI) is a commonly used quantitative measure characterizing OSA severity. Because OSA differs by sex, and the pathophysiology of obstructive events differ in rapid eye movement (REM) and non-REM (NREM) sleep, we hypothesized that additional genetic association signals would be identified by analyzing the NREM/REM-specific AHI and by conducting sex-specific analyses in multiethnic samples. We performed genome-wide association tests for up to 19,733 participants of African, Asian, European, and Hispanic/Latino American ancestry in 7 studies. We identified rs12936587 on chromosome 17 as a possible quantitative trait locus for NREM AHI in men (N = 6,737; P = 1.7 × 10 &lt;sup&gt;-8&lt;/sup&gt; ) but not in women (P = 0.77). The association with NREM AHI was replicated in a physiological research study (N = 67; P = 0.047). This locus overlapping the RAI1 gene and encompassing genes PEMT1, SREBF1, and RASD1 was previously reported to be associated with coronary artery disease, lipid metabolism, and implicated in Potocki-Lupski syndrome and Smith-Magenis syndrome, which are characterized by abnormal sleep phenotypes. We also identified gene-by-sex interactions in suggestive association regions, suggesting that genetic variants for AHI appear to vary by sex, consistent with the clinical observations of strong sexual dimorphism

    Whole-genome association analyses of sleep-disordered breathing phenotypes in the NHLBI TOPMed program

    Get PDF
    Background: Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. Methods: The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation &lt; 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. Results: We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10−8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. Conclusions: We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response

    Association of heat shock proteins with all-cause mortality

    Get PDF
    Experimental mild heat shock is widely known as an intervention that results in extended longevity in various models along the evolutionary lineage. Heat shock proteins (HSPs) are highly upregulated immediately after a heat shock. The elevation in HSP levels was shown to inhibit stress-mediated cell death, and recent experiments indicate a highly versatile role for these proteins as inhibitors of programmed cell death. In this study, we examined common genetic variations in 31 genes encoding all members of the HSP70, small HSP, and heat shock factor (HSF) families for their association with all-cause mortality. Our discovery cohort was the Rotterdam study (RS1) containing 5,974 participants aged 55 years and older (3,174 deaths). We assessed 4,430 single nucleotide polymorphisms (SNPs) using the HumanHap550K Genotyping BeadChip from Illumina. After adjusting for multiple testing by permutation analysis, three SNPs showed evidence for association with all-cause mortality in RS1. These findings were followed in eight independent population-based cohorts, leading to a total of 25,007 participants (8,444 deaths). In the replication phase, only HSF2 (rs1416733) remained significantly associated with all-causemortality. Rs1416733 is a known ciseQTL for HSF2. Our findings suggest a role of HSF2 in all-cause mortality

    Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment

    Get PDF
    Previous research has shown that genes play a substantial role in determining a person's susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden

    Sleep-wake cycle disturbances in elderly acute general medical inpatients: longitudinal relationship to delirium and dementia.

    Get PDF
    Introduction: Sleep disturbances in elderly medical inpatients are common, but their relationship to delirium and dementia has not been studied. Methods: Sleep and delirium status were assessed daily for a week in 145 consecutive newly admitted elderly acute general hospital patients using the Delirium Rating Scale-Revised-98 (DRS-R98), Diagnostic and Statistical Manual 5, and Richards-Campbell Sleep Quality Scale measures. The longitudinal relationship between DRS-R98 and Richards-Campbell Sleep Quality Scale sleep scores and delirium, also with dementia as a covariate, was evaluated using generalized estimating equation logistic regression. Results: The cohort was divided into delirium only, dementia only, comorbid delirium-dementia, and no-delirium/no-dementia subgroups. Mean age of total group was 80 6 6.3, 48% were female, and 31 (21%) had dementia, 29 had delirium at admission (20%), and 27 (18.5%) experienced incident delirium.Mild sleep disturbance (DRS-R98 sleep itemscore 1) occurred for at least 1 day in all groups, whereasmoderate sleep disturbance (score 2) occurred in significantlymore of the prevalent deliriumonly (81%; n517) cases than incident delirium-only (46%; n513) cases (P,.001). Therewere more cases with DRS-R98 sleep item scores 2 (P ,.001) in the delirium-only group compared with the other subgroups. Severity of sleep-wake cycle disturbance over time was significantly associated with Diagnostic and Statistical Manual 5 delirium status but not with age, sex, or dementia (P ,.001). Conclusions: Observer-rated more severe sleep-wake cycle disturbances are highly associated with delirium irrespective of dementia status, consistent with being a core feature of delirium. Monitoring for altered sleep-wake cycle patterns may be a simple way to improve delirium detection

    Oxidative damage, platelet activation, and inflammation to predict mobility disability and mortality in older persons : results from the health aging and body composition study

    No full text
    BACKGROUND: Inflammation, oxidative damage, and platelet activation are hypothesized biological mechanisms driving the disablement process. The aim of the present study is to assess whether biomarkers representing these mechanisms predicted major adverse health-related events in older persons. METHODS: Data are from 2,234 community-dwelling nondisabled older persons enrolled in the Health Aging and Body Composition study. Biomarkers of lipid peroxidation (ie, urinary levels of 8-iso-prostaglandin F(2\u3b1)), platelet activation (ie, urinary levels of 11-dehydro-thromboxane B(2)), and inflammation (serum concentrations of interleukin-6) were considered as independent variables of interest and tested in Cox proportional hazard models as predictors of (severe) mobility disability and overall mortality. RESULTS: The sample's (women 48.0%, whites 64.3%) mean age was 74.6 (SD 2.9) years. During the follow-up (median 11.4 years), 792 (35.5%), 269 (12.0%), and 942 (42.2%) events of mobility disability, severe mobility disability, and mortality occurred, respectively. Only interleukin-6 showed significant independent associations with the onset of all the study outcomes. Higher levels of urinary 8-iso-prostaglandin F(2\u3b1) and 11-dehydro-thromboxane B(2) independently predicted increased risk of death (hazard ratio 1.10, 95% confidence interval 1.03-1.19 and hazard ratio 1.14, 95% confidence interval 1.06-1.23, respectively). No significant interactions of gender, race, cardiovascular disease, diabetes, and antiplatelet drugs were detected on the studied relationships. CONCLUSIONS: The inflammatory marker interleukin-6 is confirmed to be a robust predictor for the onset of negative health-related events. Participants with higher urinary levels of 8-iso-prostaglandin F(2\u3b1) and 11-dehydro-thromboxane B(2) presented a higher mortality risk

    Genetic Association Study of Adiposity and Melanocortin-4 Receptor (MC4R) Common Variants: Replication and Functional Characterization of Non-Coding Regions

    No full text
    Common genetic variants 3' of MC4R within two large linkage disequilibrium (LD) blocks spanning 288 kb have been associated with common and rare forms of obesity. This large association region has not been refined and the relevant DNA segments within the association region have not been identified. In this study, we investigated whether common variants in the MC4R gene region were associated with adiposity-related traits in a biracial population-based study. Single nucleotide polymorphisms (SNPs) in the MC4R region were genotyped with a custom array and a genome-wide array and associations between SNPs and five adiposity-related traits were determined using race-stratified linear regression. Previously reported associations between lower BMI and the minor alleles of rs2229616/Val103Ile and rs52820871/Ile251Leu were replicated in white female participants. Among white participants, rs11152221 in a proximal 3' LD block (closer to MC4R) was significantly associated with multiple adiposity traits, but SNPs in a distal 3' LD block (farther from MC4R) were not. In a case-control study of severe obesity, rs11152221 was significantly associated. The association results directed our follow-up studies to the proximal LD block downstream of MC4R. By considering nucleotide conservation, the significance of association, and proximity to the MC4R gene, we identified a candidate MC4R regulatory region. This candidate region was sequenced in 20 individuals from a study of severe obesity in an attempt to identify additional variants, and the candidate region was tested for enhancer activity using in vivo enhancer assays in zebrafish and mice. Novel variants were not identified by sequencing and the candidate region did not drive reporter gene expression in zebrafish or mice. The identification of a putative insulator in this region could help to explain the challenges faced in this study and others to link SNPs associated with adiposity to altered MC4R expression
    corecore