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Abstract

Background: Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic
architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision
Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered
breathing.

Methods: The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway
analyses included an additional 13,257 individuals. We examined five complementary traits describing different
aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event,
average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with
oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and
EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan,
GIGSEA, and ReMap.
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Results: We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10−8) on chromosome X with
ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci
were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions
were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with
genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated
pathways.

Conclusions: We have identified the first gene-based rare-variant associations with objectively measured sleep-
disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered
breathing and highlight associations in genes that modulate lung development, inflammation, respiratory
rhythmogenesis, and HIF1A-mediated hypoxic response.

Keywords: Sleep-disordered breathing, Sleep apnea, Whole-genome sequencing, WGS, Genome-wide association
study, GWAS

Background
Sleep-disordered breathing (SDB) is a prevalent disorder
associated with increased sleepiness, mortality, and mor-
bidity from a wide range of cardiometabolic and other
diseases [1, 2]. The most common type of SDB is ob-
structive sleep apnea (OSA), characterized by repeated
airway collapse leading to intermittent hypoxemia and
sleep disruption, that is increased in prevalence with
older age and male sex [2]. An estimated 936 million
adults aged 30–69 have mild to severe OSA worldwide
[3]. The disease is heritable and appears to be multifac-
torial, reflecting variable contributions of abnormalities
in ventilatory control, craniofacial anatomy, and adipos-
ity [2, 4–7]. Sleep-related hypoxemia can also be due to
central sleep apnea, a less common disorder, due to a
lack of respiratory drive [8]. OSA is typically measured
clinically using the apnea-hypopnea index, which counts
the number of total (apnea) and partial (hypopnea)
breathing cessations per hour of sleep. Due to an incom-
plete understanding of its molecular basis, the standard
OSA treatment of continuous positive airway pressure
(CPAP) only addresses the downstream manifestations
of airway collapse through nightly use of pressurized air
to the nasopharynx, a therapy that often is poorly toler-
ated. Therefore, there is a critical need to identify mo-
lecular pathways that could provide specific therapeutic
targets. The need for overnight studies to phenotype
SDB traits has limited the available sample size for gen-
etic analyses, and only several common-frequency
genome-wide analysis studies have been reported [9–
11]. Increased statistical power may increase the genetic
resolution of regions that may not be adequately tagged
by current genotyping arrays due to population differ-
ences and/or reduced linkage disequilibrium with bio-
logically relevant regions.
The Trans-Omics for Precision Medicine (TOPMed)

program is an NIH National Heart, Lung, and Blood

Institute program designed to improve the understand-
ing of the biological processes that contribute to heart,
lung, blood, and sleep disorders [12]. TOPMed has gen-
erated whole-genome sequencing (WGS) data on over
100,000 individuals from multiple cohorts at > 30×
depth, including seven studies with objective assessment
of SDB. A variant imputation server using TOPMed data
also allows for high-quality imputation of non-
sequenced genotype chip data [13]. A complementary
initiative sponsored by the Centers for Common Disease
Genomics (CCDG) of the NIH National Human Gen-
ome Research Institute has generated sequencing data
from additional individuals in two TOPMed cohorts.
These initiatives provide the ability to examine the genet-
ics of SDB at unprecedented detail in African-Americans
(AA), Asian-Americans (AsA), European-Americans/Aus-
tralians (EA), and Hispanic/Latino-Americans (HA).
In this first genome-wide sequencing analysis of SDB,

we examine the apnea-hypopnea index (AHI), the stand-
ard clinic metric of SDB, and four complementary
measurements of overnight hypoxemia: average and
minimum oxyhemoglobin saturation (SpO2) during sleep
and the percent of the sleep recording with SpO2 < 90%
(Per90), and the average desaturation per hypopnea
event. These indices were chosen because of clinical
relevance, high heritability, or prior significant GWAS
findings [9, 11, 14]. We examined 7988 individuals with
objectively measured SDB and WGS data in conjunction
with data from 13,257 individuals with imputed geno-
type data.

Methods
Each study had a protocol approved by its respective
Institutional Review Board and participants provided in-
formed consent. A study overview is provided in Add-
itional file 2: Figure S1. There were two classes of data:
“WGS studies” had WGS performed by the TOPMed

Cade et al. Genome Medicine          (2021) 13:136 Page 2 of 17



program and, in some cases, in additional participants
by the CCDG program (referred to as “WGS” studies);
“Imputed studies” had array-based genotyping later im-
puted using the TOPMed imputation server (as de-
scribed below). Some studies with WGS contributed
imputed study data from additional array-based geno-
typed individuals. Ten studies were analyzed (Tables 1
and 2).

WGS studies
The Atherosclerosis Risk in Communities Study (ARIC),
the Cardiovascular Health Study (CHS), and the Fra-
mingham Heart Study Offspring Cohort (FHS) included
individuals who participated in the Sleep Heart Health
Study (SHHS), who underwent polysomnography (PSG)
between 1995 and 1998 using the Compumedics PS-2
system [15–18]. These samples included 1028 EAs from
ARIC, 151 AAs and 557 EAs from CHS, and 478 EAs
from FHS.
The Multi-Ethnic Study of Atherosclerosis (MESA) is

investigating the risk factors for clinical cardiovascular
disease [19]. PSG was obtained between 2010 and 2013
using the Compumedics Somte system [20]. This ana-
lysis includes data from 698 EAs, 486 AAs, 456 HAs,
and 229 AsAs.
The Cleveland Family Study (CFS) was designed to in-

vestigate the familial basis of SDB, with four visits occur-
ring from 1990 to 2006 [21]. Sleep was assessed either in
a clinical research center using full PSG (Compumedics
E series) (visit 4) or in the latest available prior examin-
ation using an in-home sleep apnea testing device (Eden-
trace). Data were analyzed from 505 AAs and 485 EAs
(339 AAs and 234 EAs with full PSG data).

The Hispanic Community Health Study/Study of Lati-
nos (HCHS/SOL) is studying multiple health conditions
in HAs [22, 23]. Home sleep apnea testing was per-
formed during the baseline examination (2008–2011)
using the ARES Unicorder 5.2, a validated device includ-
ing a forehead-based reflectance oximeter, a nasal pres-
sure cannula and pressure transducer, an accelerometer,
and a microphone [24]. Two thousand three hundred
thirty-nine individuals provided data.
The Jackson Heart Study (JHS) is investigating cardio-

vascular disease in AAs [25]. An in-home sleep study
was performed from 2012 to 2016 using a validated type
3 sleep apnea testing device (Embla Embletta Gold) [26,
27]. Five hundred seventy-five individuals contributed
data.

Imputed genotype studies
The Osteoporotic Fractures in Men Study (MrOS) is a
multi-center cohort study initially designed to examine
the risk factors for osteoporosis, fractures, and prostate
cancer in older males [28, 29]. An ancillary study (MrOS
Sleep; 2003–2005) focused on outcomes of sleep distur-
bances used PSG and nearly identical procedures as in
MESA (Compumedics Safiro system) [30]. Two thou-
sand one hundred eighty-one EA individuals were in-
cluded, with genotyping performed using the Illumina
Human Omni 1 Quad v1-0 H array.
The Starr County Health Studies (Starr) investigates

the risk factors for diabetes in Mexican-Americans [31,
32]. An in-home sleep apnea study occurred between
2010 and 2014 using a validated instrument that records
finger pulse oximetry, actigraphy, body position, and
peripheral arterial tonometry (Itamar-Medical

Table 1 Sample description for WGS cohorts
Population Cohort N Age Percent

female
BMI Apnea-

hypopnea
index 3%

AHI (percent
< 5, 5–15, ≥ 15)

Average
desaturation

Average
SpO2

Minimum
SpO2

Percent
sleep under
90% SpO2

African-
American

CFS* 505 38.65 (18.96) 56.4 32.44 (9.48) 6.85 (22.48) 43.4, 20.6, 36.0 3.62 (1.99) 94.49 (3.91) 84.76 (9.83) 4.79 (13.15)

CHS 151 75.39 (4.35) 60.3 29.02 (5.08) 9.60 (16.96) 28.5, 36.4, 35.1 2.70 (1.74) 94.82 (2.19) 85.74 (5.35) 3.39 (9.63)

JHS 575 63.47 (10.94) 64.9 31.8 (6.88) 10.69 (14.42) 24.7, 39.5, 35.8 3.54 (1.72) 94.77 (2.02) 84.30 (6.57) 2.97 (8.91)

MESA 486 68.81 (9.07) 53.7 30.23 (5.68) 12.67 (20.56) 22.4, 32.9, 44.7 3.42 (2.10) 94.46 (1.99) 83.32 (7.98) 3.89 (9.49)

East Asian-
American

MESA 229 67.89 (9.11) 49.8 24.28 (3.30) 14.96 (24.28) 21.8, 28.4, 49.8 3.72 (1.79) 94.92 (1.22) 83.23 (7.58) 2.25 (4.46)

European-
American

ARIC 1028 62.28 (5.67) 53.1 28.72 (5.06) 8.64 (15.62) 34.6, 32.4, 33.0 2.35 (1.29) 94.57 (1.84) 85.95 (5.93) 2.92 (9.24)

CFS* 485 43.23 (19.49) 50.5 30.81 (8.83) 7.09 (21.90) 44.7, 19.4, 35.9 3.29 (1.86) 93.67 (3.59) 85.55 (9.33) 4.66 (11.87)

CHS 557 77.90 (4.34) 54.2 27.25 (4.44) 11.42 (15.54) 23.2, 38.1, 38.8 2.58 (1.34) 94.00 (2.00) 84.99 (5.67) 4.77 (12.28)

FHS* 478 60.09 (8.54) 49.8 28.40 (5.06) 8.10 (14.28) 35.1, 35.1, 29.7 2.35 (1.27) 94.68 (2.04) 85.78 (6.25) 2.96 (9.18)

MESA 698 68.53 (9.06) 53.2 27.91 (5.10) 12.18 (20.45) 21.6, 35.0, 43.4 3.11 (1.44) 93.96 (1.75) 83.49 (7.50) 4.27 (10.82)

Hispanic/Latino-
American

HCHS/SOL 2339 46.27 (13.86) 60.5 30.23 (6.44) 2.03 (6.30) 68.9, 19.5, 11.6 N/A 96.42 (0.99) 87.04 (5.92) 0.88 (3.63)

MESA 456 68.49 (9.27) 53.3 30.08 (5.46) 16.31 (22.53) 17.1, 28.3, 54.6 3.62 (2.12) 94.33 (1.60) 81.59 (9.32) 3.80 (7.64)

Seven studies contributed 7988 individuals with WGS in TOPMed Freeze 6a and objectively measured phenotypes (1717 African-Americans, 229 Asian-Americans,
3246 European-Americans, 2796 Hispanic/Latino-Americans). The overall sample had a mean age of 57.7 and was 56.1% female. Values are displayed as mean
(SD), except for the skewed apnea-hypopnea index, which is displayed as median (IQR). Sample size N reflects individuals with non-missing AHI and covariate
values. *Family cohort
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WatchPAT-200) [33]. Seven hundred eighty-two HA
individuals were studied, using Affymetrix 6.0 geno-
typing data.
The Western Australian Sleep Health Study (WASH

S) is a clinic-based study focused on the epidemiology
and genetics of SDB [34]. PSG was obtained from
1508 European-ancestry patients (91% referred for
SDB evaluation) from 2006 to 2010 (Compumedics
Series E). Genotyping was performed using the Illu-
mina Omni 2.5 array.
Imputed genotype data were available for additional

members of the TOPMed cohorts described above. Study/
population combinations with fewer than 100 individuals
were excluded. ARIC contributed an additional 631 EA in-
dividuals (Affymetrix 6.0; dbGaP phg000035.v1.p1). CFS
contributed 225 AA and 218 EA individuals (Affymetrix
6.0; Illumina OmniExpress+Exome, Exome, and IBC).
CHS contributed 365 individuals (Illumina CNV370 and
IBC; phg000135.v1.p1 and phg000077.v1.p1). FHS con-
tributed 192 EA individuals (Affymetrix 500 k;
phg000006.v7). HCHS/SOL contributed 7155 HA individ-
uals (Illumina Omni 2.5; phg000663.v1).

Phenotype and covariate definitions
We examined several SDB measures, including specific
measures of OSA: AHI (number of apneas plus hypop-
neas per hour of sleep, with a minimum 3% desaturation
per event) and average oxyhemoglobin desaturation per
apnea or hypopnea, and measures of SDB severity [14]:
average and minimum SpO2 and the percentage of the
night with SpO2 < 90% (Per90). Apart from WASHS, all
sleep data were scored by blinded scorers at one central
Sleep Reading Center with high levels of scorer reliability
using well-defined procedures [35]. The AHI reflected
all events. We did not attempt to disentangle the apnea-
hypopnea index from central versus obstructive sleep

apnea events, due to the relatively low prevalence of cen-
tral sleep apnea (< 2%) in these largely community-based
studies [36, 37] (some of which are enriched with
snorers) and the complexities of classifying mixed
events. We adjusted for age, age2, sex, age × sex, body
mass index (BMI), and BMI2 due to known age and sex
effects, some of which are non-linearly associated with
outcomes, and our goal of identifying obesity-
independent loci. Age and BMI were obtained at the
time of the sleep recording. We adjusted for BMI as over
half of the AHI trait heritability is attributable to factors
other than obesity as measured by the BMI and our goal
was to identify associations with other mechanistic path-
ways (e.g., ventilatory control) that could indicate novel
future targets. Phenotype analyses were pooled within
populations to aggregate very rare variants for testing
and therefore further adjusted for study. Population as-
signments were based on self-report, in accordance with
other research from TOPMed and other consortia. AsA
and EA-identifying individuals with population principal
components > 5 standard deviations [38] from applicable
1000 Genomes and Human Genome Diversity Project
super-populations were excluded. We used a two-stage
procedure to rank-normalize the phenotypes adjusted
for covariates [39]. Cryptic relatedness and population
substructure were controlled for using linear mixed
models. Genomic control was applied to population-
specific results (or cohort-specific imputed genotype
results).

WGS and genotyping
Sequence data were derived from the TOPMed Freeze
6a release, jointly called by the TOPMed Informatics Re-
search Center at the University of Michigan (http://
github.com/statgen/topmed_variant_calling). The meth-
odology was described elsewhere [12]. In brief, WGS

Table 2 Sample description for imputed genotype chip cohorts
Population Cohort N Age Percent

female
BMI Apnea-

hypopnea
index 3%

AHI (percent
< 5, 5–15, ≥ 15)

Average
desaturation

Average
SpO2

Minimum
SpO2

Percent sleep
under 90%
SpO2

African-American CFS* 225 35.46 (20.32) 56.4 29.97 (10.09) 3.99 (10.55) 55.1, 23.1, 21.8 2.90 (1.09) 94.65 (4.01) 88.17 (9.60) 5.20 (16.01)

European-
American,
Australian

ARIC 631 62.74 (5.72) 49.4 29.15 (5.23) 9.15 (15.02) 29.3, 37.9, 32.8 2.50 (1.73) 94.32 (2.15) 85.17 (6.17) 4.12 (11.76)

CFS* 218 37.57 (18.66) 56.9 28.76 (8.11) 3.4 (10.59) 57.8, 22.5, 19.7 2.30 (1.11) 94.09 (3.35) 88.81 (7.80) 3.26 (12.79)

CHS 365 77.44 (4.65) 64.9 27.10 (4.41) 10.50 (15.14) 25.8, 39.2, 35.1 2.63 (1.57) 94.41 (1.91) 84.87 (5.96) 3.93 (11.89)

FHS* 192 57.45 (9.68) 51.0 28.87 (5.16) 7.30 (14.38) 38.0, 31.8, 30.2 2.42 (1.51) 94.73 (1.80) 85.76 (5.46) 2.82 (8.38)

MrOS 2181 76.65 (5.60) 0.0 27.21 (3.75) 13.00 (18.00) 18.9, 36.1, 45.0 3.54 (1.48) 93.85 (1.73) 84.39 (5.88) 4.40 (9.95)

WASHS 1508 52.29 (13.71) 40.9 31.84 (7.93) 7.24 (15.37) 40.1, 31.1, 28.8 3.56 (2.00) 94.56 (2.38) 84.61 (7.86) 5.44 (13.82)

Hispanic, Latino-
American

HCHS, SOL 7155 46.10 (13.81) 57.8 29.68 (5.86) 2.00 (6.15) 69.1, 19.3, 11.6 N, A 96.46 (0.95) 87.06 (6.11) 0.83 (2.99)

Starr 782 52.34 (11.29) 71.9 32.15 (6.78) 10.35 (17.18) 31.5, 31.5, 37.1 N, A 94.65 (2.09) 85.78 (7.50) 2.83 (8.79)

Eight studies contributed 13,257 individuals with genomic data imputed with a TOPMed Freeze 5b reference panel and objectively measured phenotypes (225
African-Americans, 5095 European-Americans, 7937 Hispanic/Latino-Americans). ARIC, CFS, CHS, FHS, and HCHS/SOL imputed genomic data reflect individuals
without available sequencing in TOPMed Freeze 6. The overall sample had a mean age of 53.7 and was 46.9% female. Values are displayed as mean (SD), except
for the skewed apnea-hypopnea Index, which is displayed as median (IQR). Sample size N reflects individuals with non-missing AHI and covariate values.
*Family cohort
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was performed at the Broad Institute (ARIC, FHS,
MESA), Baylor College of Medicine (ARIC, CHS,
HCHS/SOL), and the University of Washington (CFS,
JHS). Additional ARIC and HCHS/SOL WGS funded by
CCDG (https://www.genome.gov/27563570) and per-
formed at Baylor College of Medicine were included in
the jointly called data. TOPMed and CCDG calling pipe-
lines have functionally equivalent outcomes despite data
processing differences (as detailed in [40]). WGS data
were merged and normalized; inferred sequence contam-
ination was identified; and SNPs and small indels were
detected (structural variants are not currently available).
Lower quality variants were excluded using Mendelian
consistency checks. Variants were aligned to Build 38
and annotated using snpEff 4.3 t [41]. We excluded vari-
ants with < 10× depth or > 5% missingness, leaving
152.7 million polymorphic variants in 7988 individuals
with SDB phenotypes. Up to 22,030,888 variants from
individuals with sequencing were tested in the GWAS
analyses, following filtering for quality control and minor
allele frequencies.
Genotype data were imputed using the TOPMed Im-

putation Server [13] using a Freeze 5b (Build 38) tem-
plate. Forward strand checks were performed using the
Strand database and the Haplotype Reference Consor-
tium imputation preparation script (https://www.well.ox.
ac.uk/~wrayner/tools/) and confirmed using Ensembl
variant allele checks and internal QC performed on the
server. Study-level data were imputed separately. Ana-
lyses on variants with r2 score > 0.5 were therefore
performed separately for each study. Up to 22,105,437
variants from individuals with imputed data were tested
in the GWAS analyses, following filtering for quality
control, imputation r2, and minor allele frequencies.

Statistical analyses
Single and grouped variant analyses were performed
using EMMAX and MMSKAT, both within the EPAC
TS suite (v3.3) [42]. WGS genetic relatedness matrices
(GRM) were constructed using autosomal variants (MAF
> 0.1%) following a comparison of EPACTS point-wise
heritability estimates of the AHI using different minimal
MAFs. A grid search identified optimal GRM parameters
with imputed data (MAF > 0.5%, r2 > 0.90) using 929
ARIC individuals with imputation and WGS data. Log10
P-values using identical association test parameters had
a Spearman’s ρ correlation of 0.951 between WGS and
imputed data. Matrices were constructed separately for
each study + population combination (due to potentially
differential imputation coverage).
Gene-based group sets considered Ensembl-defined

non-pseudogenes expressed in any GTEx v7 tissue. Vari-
ants needed to clear a series of frequency, regional, func-
tional class, and presumed functionality score filters in

order to test a gene using its most biologically plausible
variants. Variants could have a maximum minor allele
frequency of 5%. Regions were largely exon-based. We
also included variants located within experimentally de-
rived promoter regions and Ensembl-derived Tarbase
miRNA binding sites; and regulatory variants located
within 1000 bases of a particular gene, including ChIP-
seq determined transcription factor binding sites (TFBS),
and Ensembl-derived CTCF, TFBS, and promoter sites
[43–45]. Variants from a subset of 19 snpEff gene-based
annotation functional classes (e.g., missense or nonsense,
but not synonymous mutations) were considered. Fi-
nally, group set variants passing these prior filters were
additionally filtered for the plausibility of biological
function by requiring either a FATHMM-XF score > 0.5
or a CDTS < 1% constrained region score [46, 47]. Ex-
onic variants could alternatively have a PrimateAI score
> 0.803 or a Havrilla et al. < 1% constrained coding re-
gion score [48, 49].
Gene-based tests considered variants in WGS-only

data. Pooled (across cohort) analyses were performed
within each population in order to aggregate information
on very rare variants across studies. Combined
population results were obtained through meta-analysis
of p-values weighted by sample size (due to potentially
different MAF spectra driven by population demog-
raphy). A significance level of p < 4.51 × 10−8 was used,
reflecting a Bonferroni adjustment for all genes tested
across all phenotype and population configurations.
A second set-based analysis was designed to query for

TFBS annotation enrichment [50]. We performed 250-
base pair sliding window analyses (to improve power by
aggregating additional variants beyond an approximate
ChIP-seq peak width of 100 base pairs). We filtered for
variants with either a FATHMM-XF score > 0.5 or a
CDTS 1% score with no MAF cut-offs and meta-
analyzed MMSKAT results across the 4 populations,
noting windows with p-values < 0.01. These intervals
were tested for enrichment of ChIP-seq coordinates with
at least 50% physical overlap for up to 437 transcription
factors using ReMap 2018 v1.2 [51].
Single-variant EMMAX tests examined common vari-

ants (MAF > 0.5%). Meta-analysis across populations
(and imputed genotype studies) used METAL with gen-
omic control [52]. We performed bidirectional discovery
and replication using the WGS and imputed samples
(noting the high genomic resolution in the WGS sam-
ples and the higher sample size in the imputed data).
We report results including at least 1000 individuals in
discovery analyses, discovery association p-values < 1 ×
10−5 and replication association p-values < 0.05.
Therefore, no population-specific discovery analyses of
Asian-Americans were performed. Multi-ethnic analyses
included a minimum of two populations where a variant
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cleared minimum MAF and imputation quality (for
chip-based results) criteria. Significance was defined as p
< 1 × 10−8 in joint analyses, reflecting adjustment for five
correlated phenotypes (Additional file 1: Table S3). We
performed MetaXcan imputed GTEx gene expression
analyses using joint EA results in selected tissues rele-
vant to SDB and GIGSEA pathway analyses of MetaXcan
output in whole blood (to maximize power), with empir-
ical p-values incorporating 10,000 permutations [53, 54].
Bioinformatics annotations of single-variant results (Add-
itional file 1: Table S7) include significant eQTL associa-
tions from GTEx v7, and overlapping promoter and
enhancer coordinates derived from Roadmap Epige-
nomics, BLUEPRINT, and Vermunt et al. brain tissues
(enhancers only) [55–58]. Lookups of potentially drug-
gable genes as defined within DGIdb, a database of 56,000
drug-gene interactions from over 30 literature sources,
were performed using the GeneCards suite [59, 60].

Results
Study sample
A study overview is provided in Additional file 2: Figure
S1. Tables 1 and 2 provide a summary of the study sam-
ples and SDB traits analyzed using WGS and imputed ge-
notypes, respectively. In total, there were 21,244
individuals (1942 AAs, 229 AsAs, 8341 EAs, and 10732
HAs). Median AHI levels ranged from mildly to moder-
ately elevated, reflecting the age range and sex distribution
of each cohort. Pairwise correlations of phenotypes and
covariates are provided in Additional file 1: Table S3.

Gene-based results
Gene-based rare-variant results are presented in Table 3
(for meta-analyzed results across multiple populations)
and in Table 4 (for secondary population-specific re-
sults). Collectively, we identified four significantly associ-
ated genes (Bonferroni p < 4.51 × 10−8). ARMCX3,
identified in the multiple-population analysis, is an X-
linked protein-coding that was associated with average
desaturation (p = 5.29 × 10−8). Two protein-coding
genes were identified in population-specific analyses of
Per90: MRPS33 (p = 1.22 × 10−9) and C16orf90 (p = 1.36
× 10−8). We identified 12 suggestively associated genes
(p ≤ 4.22 × 10−7). Three genes are druggable [59, 60].
Nominally significant results (p < 0.01) and additional
details are presented in Additional file 1: Tables S4 and
S5. A list of individual variants comprising each gene is
provided in Additional file 1: Table S6.

Single-variant results
We identified four genome-level significant loci in
single-variant analyses (MAF > 0.5%; p < 1.0 × 10−8;
Table 5). In multiple-population analyses, the 2q12 locus
(rs77375846; IL18RAP) was associated with average

event desaturation in a multiple-population analysis
(combined p = 1.57 × 10−9) and minimum SpO2 (con-
sistent with a previous report [10]). Two novel
population-specific loci were identified. The 8p12 locus
(rs35447033, NRG1) was associated with AHI in EAs
(combined p = 3.02 × 10−9, Fig. 1). The 5p13 locus
(rs28777; SLC45A2) was associated with average SpO2 in
EAs (combined p = 8.08 × 10−10, Fig. 2). In HAs, the
1q32 locus (rs116133558; ATP2B4) was associated with
Per90 (combined p = 3.51 × 10−10) and with average
SpO2 (as previously identified [9]). Twelve additional re-
gions were suggestively associated (p < 1.0 × 10−7). Add-
itional file 1: Table S7 provides additional context for all
variants in these loci (p < 1.0 × 10−7), including imput-
ation quality, significant eQTLs, and overlap with epi-
genetic regions. Lookups of loci that we have identified
in prior publications [9–11] are provided in Additional
file 1: Table S8. Manhattan and QQ plots corresponding
to the significant associations are provided in Additional
file 2: Figures S2–S5. GWAS summary statistics have
been posted to the Broad Institute Sleep Disorders Re-
search Portal (https://sleep.hugeamp.org/).

MetaXcan imputed gene expression and GIGSEA pathway
analyses
We used joint WGS and imputed EA results to impute
associations with gene expression levels using a MetaX-
can framework for six tissues (subcutaneous and visceral
omentum adipose, lung, monocytes, skeletal muscle, and
whole blood). No individual tests reached Bonferroni
significance (p < 2.60 × 10−7; Additional file 1: Table S9).
Genes that were observed in the top 10 results across
the varied analyses (Additional file 1: Table S10) in-
cluded ZNF83 (15 instances) and CHRNE (13 instances).
Whole blood MetaXcan results (with the largest sample

size) were further evaluated in GIGSEA-based pathway
analyses. KEGG pathway results are shown in Additional
file 1: Table S11. The most significantly associated path-
way was KEGG_STEROID_HORMONE_BIOSYNTHESIS
(average SpO2 empirical p-value = 7.00 × 10−4). KEGG_
RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY was
observed in the top 10 results for four of the five pheno-
types. Gene-centric transcription factor binding site
(TFBS) enrichment analysis results are presented in Add-
itional file 1: Table S12. V$PEA3_Q6 (ETV4) was the most
significantly associated TFBS (average desaturation empir-
ical p-value = 3.00 × 10−4) and was the strongest associ-
ation for AHI and minimum SpO2 (empirical p-values
0.002 and 0.001, respectively). The most significant
miRNA binding site enrichment analysis association was
GCATTTG,MIR-105 (average SpO2 p = 0.002; Additional
file 1: Table S13). AGGCACT,MIR-515-3P (the strongest
AHI association, p = 0.009) was observed in the top ten
results for four phenotypes.
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ChIP-seq transcription factor binding site interval
enrichment
We performed a sliding window analysis to examine
enriched intervals containing ChIP-seq derived coordi-
nates for up to 437 transcription factors (Table 6, Add-
itional file 1: Table S14). FOXP2 TFBS were consistently
the most enriched for all phenotypes. Other notable
transcription factors in the top 5 included EGR1,
KDM4B, KDM6B, and TP63. KDM4B and KDM6B are
druggable [59, 60]. Leading sliding window results are
provided in Additional file 1: Table S15.

Discussion
Sleep-disordered breathing is associated with increased risk
of a wide range of disorders, including cardiometabolic dis-
ease, cancer, cognitive impairment, and interstitial lung dis-
eases, as well as premature mortality [2, 61]. Treatment
options, however, are limited by a lack of knowledge of

molecular pathways, including those that may be “drug-
gable.” Recent analyses of SDB traits have focused on com-
mon variants and identified several preliminary genome-
level significant associations [9–11], but did not address
gene-based or rare-variant effects. Ten studies and over 21,
000 individuals of multiple ancestries with WGS data at un-
precedented resolution from the NHLBI TOPMed program
combined with densely imputed data from other sources
contributed to these results. We identified several variant,
gene-based, and pathway-level associations. Analyses ad-
justed for obesity, a major SDB risk factor, identified loci
and genes implicated in pulmonary, inflammatory, and cra-
niofacial pathways. Some associations were population-
specific, while others were sex-specific, consistent with
population differences and strong sex differences for SDB
[20, 62]. Notably, across multiple ancestral groups, we
identified a set-based rare-variant association (p = 3.48 ×
10−8) on chromosome X with ARMCX3.

Table 3 Lead gene-based multiple-population results
Phenotype Sex Gene B38 positions P N Variants Population P Population N Population

variants

Avg
desaturation

All ARMCX3 X:101,623,082–
101,625,765

3.48 × 10−8 5222 41 0.220, 0.179, 2.17 × 10−6, 8.93 × 10−4 1545; 227; 2994; 456 8, 5, 24, 9

All ARMCX3-AS1 X:101,623,082–
101,625,153

3.49 × 10−8 5222 38 0.225, 0.179, 2.19 × 10−6, 8.20 × 10−4 1545; 227; 2994; 456 7, 5, 23, 8

Per90 All OR5K2 3:98,497,633–
98,498,634

2.55 × 10−7 7986 7 0.143, 0.440, 4.14 × 10−2, 2.74 × 10−7 1712; 229; 3,242; 2803 4, 2, 1, 1

Per90 Females ZZEF1 17:4,004,409–
4,144,018

4.22 × 10−7 4485 236 0.634, 0.337, 5.03 × 10−4, 3.05 × 10−5 1009; 114; 1702; 1660 85, 16, 87, 131

Lead MMSKAT gene-based results meta-analyzed across populations within one order of magnitude of significance (p < 4.51 × 10−8) are shown. Population-
specific information for each gene is displayed in the latter columns for AA, AsA, EA, and HA, respectively. Individual populations varied in the number of
polymorphic variants available for testing (e.g., due to singletons or excessively common variants). ARMCX3-AS1 is a RNA gene that is anti-sense to the protein-
coding ARMCX3 gene. Full results for genes with p < 0.01, including Ensembl-derived gene biotypes and descriptions, are provided in Additional file 1: Table S4. A
list of individual variants comprising each gene is provided in Additional file 1: Table S6

Table 4 Lead gene-based population-specific results

Phenotype Model Gene B38 positions N Variants Singletons P

Per90 HA LINC01277 6:142,985,371–143,010,415 2803 2 0 5.02 × 10−8

OR5K2 3:98,497,633–98,498,634 2803 1 0 2.74 × 10−7

AA females S100A16* 1:153,607,528–153,616,353 1009 1 1 2.07 × 10−7

CSMD2-AS1 1:33,867,977–33,885,456 1009 1 1 2.07 × 10−7

EA females MRPS33 7:141,006,422–141,014,911 1702 9 8 1.22 × 10−9

LINC01811 3:34,170,921–34,558,474 1702 6 5 9.71 × 10−8

NELFCD* 20:58,980,722–58,995,761 1702 12 10 3.32 × 10−7

SLC22A8* 11:62,988,399–63,015,986 1702 3 3 3.58 × 10−7

HA females AL132709.1 14:101,077,452–101,077,578 1660 2 0 1.41 × 10−7

EPHX4 1:92,029,443–92,063,474 1660 12 10 3.48 × 10−7

HA males C16orf90 16:3,493,483–3,496,479 1143 6 3 1.36 × 10−8

TVP23B 17:18,781,270–18,806,714 1143 4 4 2.53 × 10−7

IPCEF1 6:154,154,536–154,356,890 1143 10 8 4.07 × 10−7

Lead MMSKAT gene-based population-specific associations within one order of magnitude of significance (p < 4.51 × 10−8) are shown. The Variants column
indicates the number of filtered polymorphic variants with minor allele frequency < 5% available for testing, a portion of which were singletons. *Druggable gene
[59, 60]. Full results for genes with p < 0.01, including descriptions, are provided in Additional file 1: Table S5. A list of individual variants comprising each gene is
provided in Additional file 1: Table S6
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Fig. 1 Regional plot of the rs35447033 association with AHI in European-ancestry individuals. Joint WGS and imputed results are shown, using
Build 38 coordinates on the X-axis. Log-transformed p-values are shown on the Y-axis. Variant colors indicate the degree of linkage disequilibrium
with the lead variant rs35447033

Fig. 2 Regional plot of the rs28777 association with average SpO2 in European-ancestry individuals. Joint WGS and imputed results are shown,
using Build 38 coordinates on the X-axis. Log-transformed p-values are shown on the Y-axis. Variant colors indicate the degree of linkage
disequilibrium with the lead variant rs28777
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Gene-based results
Across multiple populations, ARMCX3 (ALEX3) and the
RNA anti-sense gene ARMCX3-AS1 were associated
with apnea-hypopnea triggered intermittent hypoxia.
ARMCX3 regulates mitochondrial aggregation and traf-
ficking in multiple tissues and facilitates neuronal sur-
vival and axon regeneration [63–65]. Wnt signaling
regulates reactive oxygen species (ROS) generation and
ARMCX3-associated mitochondrial aggregation [64, 66].
Potential mechanisms for further study include sensi-
tized carotid body chemoreflexes, interaction with in-
flammatory mechanisms, and neuronal dysfunction
within respiratory centers. Sleep apnea and reduced ven-
tilatory drive are enriched in individuals with a primary
mitochondrial disorder [67]. Mitochondria are an im-
portant source of ROS, which modulate the acute hyp-
oxic ventilatory response. Mitochondria impact HIF1A
signaling and may contribute to oxygen sensing [68, 69].

ROS are required for intermittent hypoxia-induced re-
spiratory long-term facilitation [70]. These effects may
mitigate the level of hypoxia resulting from recurrent ap-
neas, or conversely, lead to ventilatory instability, pro-
moting apnea occurrence. Mitochondrial ROS also
activate the NLRP3 inflammasome in multiple pulmon-
ary diseases, consistent with an inflammation model that
includes our IL18-pathway and HK1 results, ROS-
related proinflammatory responses to lung capillary
pressure, and evidence of alveolar epithelial injury/SDB
interactions [10, 69, 71–73]. Our findings suggest value
in investigating the mechanisms by which ARMCX3 pre-
disposes to SDB, and whether these associations are me-
diated by neuronal dysfunction and/or ROS and carotid
body sensitization, and interact with the inflammasome.
Additional genes were significantly associated in

population-specific analyses, including the mitochondrial
ribosomal gene MRPS33. Mitoribosomes are responsible

Table 6 Transcription factor binding site interval enrichment results

Phenotype Transcription factor # Observed overlap # Expected overlap −log10 (E-value)

AHI FOXP2 588 36.20 473.99

KDM6B 630 51.58 435.29

THAP1 505 31.89 402.07

KLF9 745 91.81 395.52

TP63 997 182.22 383.85

Average desaturation FOXP2 493 22.32 460.00

THAP1 439 19.55 412.76

UBTF 489 28.20 407.50

TP63 788 109.36 382.89

KDM6B 482 30.98 380.39

Average SpO2 FOXP2 582 35.87 468.89

KDM6B 613 51.21 418.65

EGR1 664 66.76 404.83

UBTF 574 46.35 399.91

KDM4B 489 29.56 398.10

Min SpO2 FOXP2 561 35.57 445.57

THAP1 515 31.32 417.89

KDM6B 569 50.87 373.41

UBTF 536 45.99 360.56

EGR1 602 66.25 346.03

Per90 FOXP2 689 39.05 578.42

KDM6B 739 54.79 539.69

TP63 1199 193.28 515.44

THAP1 607 34.47 509.33

EGR1 786 72.09 507.27

Two-hundred-fifty-base pair sliding window coordinates with association p < 0.01 were queried for interval enrichment of ChIP-seq-derived transcription factor
binding sites using the ReMap annotation tool. ChIP-seq coordinates were required to have >50% overlap with a sliding window interval. ReMap-derived
expected overlaps are obtained from the equivalent number of similarly sized random regions. E-value indicates the expected value, with a higher log-
transformed value indicating greater enrichment. Full results are provided in Additional file 1: Table S14
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for the expression of the 13 essential components of the
oxidative phosphorylation system, and a majority of the
small subunit proteins have been implicated in disease [74].
The expression of several small and large subunit proteins
are altered in a hypoxic environment [75]. MRPS33 expres-
sion varies with oxygen treatment in COPD [76].

Single-variant results
We identified four common frequency associated loci,
including multiple-population associations with the
IL18RAP region. The IL18RAP region has been associ-
ated with minimum SpO2 [10], and here we further
identify an association with average event desaturation,
highlighting a role in an OSA-specific trait. Multiple var-
iants in this region are also GTEx eQTL variants for
both interleukin-18 receptor subunits IL18RAP and
IL18R1 (Additional file 1: Table S7) and experimental
studies support a role for IL18 signaling in mediating
this association, possibly through effects of pulmonary
inflammation on gas exchange (reviewed in [10]).
We identified three population-specific loci, including

two novel associations in individuals of European ancestry
(Figs. 1 and 2). Sixty-five variants in the NRG1 region were
associated with the AHI (p < 1.0 × 10−8, Additional file 1:
Table S7). This region was suggestively associated with
sleep apnea in a Korean population [77]; however, the lead
signals appear to be independent (rs10097555 Korean p =
2.6 × 10−6, EA p = 0.91). NRG1 is associated with lung
development and acute lung injury and mediates
inflammasome-induced alveolar cell permeability [78–80].
NRG1 promotes accumulation of HIF1A and has increased
expression in vascular smooth muscle cells following expos-
ure to intermittent hypoxia [81, 82]. The lead SLC45A2 re-
gion variant rs28777 (average SpO2 p = 8.08 × 10−10) has
been associated with multiple traits and is in a splicing
regulatory element with extreme population differentiation
[83]. An association in the ATP2B4 region with average
SpO2 in HAs [9] has been extended to a second hypoxemia
trait at the same variant (Per90 p = 3.31 × 10−10). This gene
is the main cellular membrane calcium pump in erythro-
cytes and also regulates vascular tone [84, 85].

Pathway analyses
Several gene pathways were identified in EA individuals
using imputed gene expression in whole blood (Additional
file 1: Table S11). KEGG_RIG_I_LIKE_RECEPTOR_SIG-
NALING_PATHWAY (retinoic acid-inducible gene I-
like) was the most commonly observed, occurring in the
top 10 results for 4 of the 5 phenotypes. This pathway ini-
tiates the immune response to RNA virus infection [86],
consistent with a role for inflammation at the NRG1 and
IL18RAP loci. Steroid hormone biosynthesis (the most sig-
nificantly associated pathway), PPAR signaling, and me-
tabolism (via “starch and sucrose metabolism”) suggest

the importance of biological pathways modulating energy
homeostasis and balance and metabolic function [87]. In
the gene-centric GIGSEA TFBS analysis, V$PEA3_Q6
(ETV4) was the lead association for three phenotypes.
ETV4 influences branching in the developing lung and
regulates hypoxia-inducible factor signaling [88, 89], a
major mechanism influencing ventilatory control.

Transcription factor binding site enrichment
Several transcription factors were identified through inter-
val enrichment of observed TFBS across the genome (Table
6). FOXP2 was consistently the most enriched transcription
factor and is known to regulate gene expression in epithelial
lung tissue and response to lung injury through an inflam-
matory mechanism [90, 91]. FOXP2 is also expressed in
brainstem respiratory areas including the pre-Bötzinger
complex (which is essential for respiratory rhythmogenesis)
and impacts airway morphology [92, 93]. Two lysine
demethylases (KDM4B and KDM6B) were also identified.
KDM6B (JMJD3) is required for a functional pre-Bötzinger
complex [94, 95] and reduced KDM6B protein expression
was reported in hypoxic OSA patients [96]. Kdm6b also
plays roles in immune function and lung development [97–
99]. Drosophila Kdm4b knock-outs have increased sleep
[100]. KDM4B (JMJD2B) and KDM6B are both members
of the JmjC protein domain family and are regulated by
HIF1A, require oxygen as a cofactor, and act as oxygen sen-
sors for chromatin in hypoxia [101, 102]. EGR1 mediates
hypoxia-induced pulmonary fibrosis [103]. TP63 is associ-
ated with cleft palate in Tp63 deficient mice, which is asso-
ciated with an increased prevalence of OSA [104, 105],
suggesting that its relationship to OSA may be through
pathways influencing craniofacial development. Among the
leading 250-base pair sliding window results (Additional file
1: Table S15), 4:105708751-105709001 (Per90 HA p = 2.72
× 10−9) is of note due to regional associations with lung
function and expression in the human lung [106].

Strengths and weaknesses
This study is the first genome-wide analysis of objectively
measured SDB traits using deep sequencing. Together
with improved imputation quality, the TOPMed resource
has enabled unprecedented genetic resolution. We exam-
ined clinically relevant phenotypes measured using rigor-
ous methodology [2, 14]. We analyzed data from 10
studies of individuals from four population groups that
used different ascertainment strategies, which may poten-
tially improve the generalization of our results. While this
analysis is among the largest performed for SDB traits to
date, our moderate sample size has lower power to detect
weaker associations, and data were not available to repli-
cate these first rare-variant associations. We did not spe-
cifically study the central apnea-hypopnea index due to
the relatively low prevalence of central sleep apnea (< 2%)

Cade et al. Genome Medicine          (2021) 13:136 Page 11 of 17



in these largely community-based studies [36, 37]. While
there are multiple lines of evidence in the literature to
support our findings, additional experimental follow-up
analyses are required.

Conclusions
We have identified the first rare-variant and additional
common-variant associations at genome-level signifi-
cance with objectively measured SDB traits in humans.
The results point to biologically relevant pathways for
further study, including a novel X-linked association
(ARMCX3), and a number of associations in genes that
modulate lung development, inflammation, respiratory
rhythmogenesis, and HIF1A-mediated hypoxic-response
pathways. These associations will motivate future sample
collection and follow-up in cell-line and animal valid-
ation studies, with potential therapeutic benefit for
sleep-disordered breathing and related comorbidities.
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