478 research outputs found

    Examination of alternative catalysts for biomass direct liquefaction

    Get PDF
    We have now completed a survey study of several water-soluble salts of transition metals that are deemed likely to have utility as catalysts for direct biomass liquefaction in a carbon monoxide steam process. Certain salts of molybdenum and nickel are the most effective catalysts, and are the only species for which some catalytic activity independent of the ligand can be shown. The most effective forms of the nickel and molybdenum are cyanide and oxyanion complexes. 30 refs., 5 figs., 4 tabs

    Impacts of saltwater intrusion on soil nematodes community in alluvial and acid sulfate soils in paddy rice fields in the Vietnamese Mekong Delta

    Get PDF
    © 2020 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. https://creativecommons.org/licenses/by-nc-nd/4.0/Saltwater intrusion is a potential risk damaging crop diversity and productivity due to degraded soil physicochemical properties. However, little is known about how salinity affects the structure and function of soil nematodes community in intensive rice cultivated area. This study aimed (1) to assess the impacts of saltwater intrusion on the nematode community in alluvial and acid sulfate soils; and (2) to evaluate its relation with soil conditions. Saltwater intrusion reduced the abundance of both free-living nematodes (FLN) and plant-parasitic nematodes (dominated by Hirschmanniella) in soils. FLN community was different among sites with different physicochemical properties. The omnivorous genera Aporcelaimellus and Thornenema were only found in non-salt-affected alluvial soil, whilst Mesodorylaimus was dominant in salt-affected acid sulfate soil, suggesting that this genus might be tolerant to higher EC and soluble Na+, K+, Ca2+. The bacterivorous nematodes (dominant taxa Chronogaster, Rhabdolaimus) were dominant in both non-salt affected and salt-affected alluvial soils, which accounted for 48% and 40%, respectively, whilst it accounted for 21% in salt-affected acid sulfate soil. The abundance of fungivorous nematodes (Aphelenchoides, Ditylenchus, Filenchus) were greater in salt-affected alluvial soil in contrast to the other treatments, suggesting that these might be tolerant to salinity and low pH. Saltwater intrusion reduced biological diversity (Margalef, Shannon-Wiener, and Hill’s indices), maturity index (∑MI, MI25), and clearly affected functional guilds of nematode community, especially c-p 5 group was reduced in both salt-affected soils. This study suggests that saltwater intrusion showed a potential risk in the degradation of soil properties, as indicated by the altered nematode community, trophic structure, functional guilds and their ecological indices in paddy fields.Peer reviewedFinal Published versio

    Mechanistic Basis for Red Light Switching of Azonium Ions

    Get PDF
    Azonium ions formed by the protonation of tetra-ortho-methoxy-substituted aminoazobenzenes photoisomerize with red light under physiological conditions. This property makes them attractive as molecular tools for the photocontrol of physiological processes, for example, in photopharmacology. However, a mechanistic understanding of the photoisomerization process and subsequent thermal relaxation is necessary for the rational application of these compounds as well as for guiding the design of derivatives with improved properties. Using a combination of sub-ps/ns transient absorption measurements and quantum chemical calculations, we show that the absorption of a photon by the protonated E-H+ form of the photoswitch causes rapid (ps) isomerization to the protonated Z-H+ form, which can also absorb red light. Proton transfer to solvent then occurs on a microsecond time scale, leading to an equilibrium between Z and Z-H+ species, the position of which depends on the solution pH. Whereas thermal isomerization of the neutral Z form to the neutral E form is slow (∼0.001 s-1), thermal isomerization of Z-H+ to E-H+ is rapid (∼100 s-1), so the solution pH also governs the rate at which E/E-H+ concentrations are restored after a light pulse. This analysis provides the first complete mechanistic picture that explains the observed intricate photoswitching behavior of azonium ions at a range of pH values. It further suggests features of azonium ions that could be targeted for improvement to enhance the applicability of these compounds for the photocontrol of biomolecules.</p

    High performance continuous-wave laser cavity enhanced polarimetry using RF-induced linewidth broadening

    Get PDF
    We present precise optical rotation measurements of gaseous chiral samples using near-IR continuous-wave cavity-enhanced polarimetry. Optical rotation is determined by comparing cavity ring-down signals for two counter-propagating beams of orthogonal polarisation which are subject to polarisation rotation by the presence of both an optically active sample and a magneto-optic crystal. A broadband RF noise source applied to the laser drive current is used to tune the laser linewidth and optimise the polarimeter, and this noise-induced laser linewidth is quantified using self-heterodyne beat-note detection. We demonstrate the optical rotation measurement of gas phase samples of enantiomers of α-pinene and limonene with an optimum detection precision of 10 µdeg per cavity pass and an uncertainty in the specific rotation of ∼0.1 deg dm−1 (g/ml)−1 and determine the specific rotation parameters at 730 nm, for (+)- and (−)-α-pinene to be 32.10 ± 0.13 and −32.21 ± 0.11 deg dm−1 (g/ml)−1, respectively. Measurements of both a pure R-(+)-limonene sample and a non-racemic mixture of limonene of unknown enantiomeric excess are also presented, illustrating the utility of the technique

    DETERMINATION OF THE ELECTROWEAK CHIRAL-LAGRANGIAN PARAMETERS AT THE LHC

    Get PDF
    In this work we report on the results obtained in a detailed and systematical study of the possibility to measure the parameters appearing in the electroweak chiral lagrangian. The main novelty of our approach is that we do not use the Equivalence Theorem and therefore we work explicitly with all the gauge boson degrees of freedom.Comment: 59 pages,latex, figures available on reques

    Measurement of the partial widths of the Z into up- and down-type quarks

    Full text link
    Using the entire OPAL LEP1 on-peak Z hadronic decay sample, Z -> qbarq gamma decays were selected by tagging hadronic final states with isolated photon candidates in the electromagnetic calorimeter. Combining the measured rates of Z -> qbarq gamma decays with the total rate of hadronic Z decays permits the simultaneous determination of the widths of the Z into up- and down-type quarks. The values obtained, with total errors, were Gamma u = 300 ^{+19}_{-18} MeV and Gamma d = 381 ^{+12}_{-12} MeV. The results are in good agreement with the Standard Model expectation.Comment: 22 pages, 5 figures, Submitted to Phys. Letts.

    Search for R-Parity Violating Decays of Scalar Fermions at LEP

    Full text link
    A search for pair-produced scalar fermions under the assumption that R-parity is not conserved has been performed using data collected with the OPAL detector at LEP. The data samples analysed correspond to an integrated luminosity of about 610 pb-1 collected at centre-of-mass energies of sqrt(s) 189-209 GeV. An important consequence of R-parity violation is that the lightest supersymmetric particle is expected to be unstable. Searches of R-parity violating decays of charged sleptons, sneutrinos and squarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield final states consisting of leptons, jets, or both with or without missing energy. No significant single-like excess of events has been observed with respect to the Standard Model expectations. Limits on the production cross- section of scalar fermions in R-parity violating scenarios are obtained. Constraints on the supersymmetric particle masses are also presented in an R-parity violating framework analogous to the Constrained Minimal Supersymmetric Standard Model.Comment: 51 pages, 24 figures, Submitted to Eur. Phys. J.

    Measurement of the Strong Coupling alpha s from Four-Jet Observables in e+e- Annihilation

    Full text link
    Data from e+e- annihilation into hadrons at centre-of-mass energies between 91 GeV and 209 GeV collected with the OPAL detector at LEP, are used to study the four-jet rate as a function of the Durham algorithm resolution parameter ycut. The four-jet rate is compared to next-to-leading order calculations that include the resummation of large logarithms. The strong coupling measured from the four-jet rate is alphas(Mz0)= 0.1182+-0.0003(stat.)+-0.0015(exp.)+-0.0011(had.)+-0.0012(scale)+-0.0013(mass) in agreement with the world average. Next-to-leading order fits to the D-parameter and thrust minor event-shape observables are also performed for the first time. We find consistent results, but with significantly larger theoretical uncertainties.Comment: 25 pages, 15 figures, Submitted to Euro. Phys. J.

    Measurement of the Hadronic Photon Structure Function F_2^gamma at LEP2

    Get PDF
    The hadronic structure function of the photon F_2^gamma is measured as a function of Bjorken x and of the factorisation scale Q^2 using data taken by the OPAL detector at LEP. Previous OPAL measurements of the x dependence of F_2^gamma are extended to an average Q^2 of 767 GeV^2. The Q^2 evolution of F_2^gamma is studied for average Q^2 between 11.9 and 1051 GeV^2. As predicted by QCD, the data show positive scaling violations in F_2^gamma. Several parameterisations of F_2^gamma are in agreement with the measurements whereas the quark-parton model prediction fails to describe the data.Comment: 4 pages, 2 figures, to appear in the proceedings of Photon 2001, Ascona, Switzerlan
    corecore