509 research outputs found

    ASTErIsM - Application of topometric clustering algorithms in automatic galaxy detection and classification

    Full text link
    We present a study on galaxy detection and shape classification using topometric clustering algorithms. We first use the DBSCAN algorithm to extract, from CCD frames, groups of adjacent pixels with significant fluxes and we then apply the DENCLUE algorithm to separate the contributions of overlapping sources. The DENCLUE separation is based on the localization of pattern of local maxima, through an iterative algorithm which associates each pixel to the closest local maximum. Our main classification goal is to take apart elliptical from spiral galaxies. We introduce new sets of features derived from the computation of geometrical invariant moments of the pixel group shape and from the statistics of the spatial distribution of the DENCLUE local maxima patterns. Ellipticals are characterized by a single group of local maxima, related to the galaxy core, while spiral galaxies have additional ones related to segments of spiral arms. We use two different supervised ensemble classification algorithms, Random Forest, and Gradient Boosting. Using a sample of ~ 24000 galaxies taken from the Galaxy Zoo 2 main sample with spectroscopic redshifts, and we test our classification against the Galaxy Zoo 2 catalog. We find that features extracted from our pipeline give on average an accuracy of ~ 93%, when testing on a test set with a size of 20% of our full data set, with features deriving from the angular distribution of density attractor ranking at the top of the discrimination power.Comment: 20 pages, 13 Figures, 8 Tables, Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    The Fermi blazars' divide based on the diagnostic of the SEDs peak frequencies

    Full text link
    We have studied the quasi-simultaneous Spectral Energy Distributions (SED) of 48 LBAS blazars, detected within the three months of the LAT Bright AGN Sample (LBAS) data taking period, combining Fermi and Swift data with radio NIR-Optical and hard-X/gamma-ray data. Using these quasi-simultaneous SEDs, sampling both the low and the high energy peak of the blazars broad band emission, we were able to apply a diagnostic tool based on the estimate of the peak frequencies of the synchrotron (S) and Inverse Compton (IC) components. Our analysis shows a Fermi blazars' divide based on the peak frequencies of the SED. The robust result is that the Synchrotron Self Compton (SSC) region divides in two the plane were we plot the peak frequency of the synchrotron SED vs the typical Lorentz factor of the electrons most contributing to the synchrotron emission and to the inverse Compton process. Objects within or below this region, radiating likely via the SSC process, are high-frequency-peaked BL Lac object (HBL), or low/intermediate-frequency peaked BL Lac object (LBL/IBL). All of the IBLs/LBLs within or below the SSC region are not Compton dominated. The objects lying above the SSC region, radiating likely via the External radiation Compton (ERC) process, are Flat Spectrum Radio Quasars and IBLs/LBLs. All of the IBLs/LBLs in the ERC region show a significant Compton dominance.Comment: Contribution to the Workshop SciNeGHe 2009/Gamma-ray Physics in the LHC era (Assisi - Italy, Oct. 7-9 2009

    The 26 year-long X-ray light curve and the X-ray spectrum of the BL Lac Object 1E 1207.9+3945 in its brightest state

    Full text link
    We studied the temporal and spectral evolution of the synchrotron emission from the high energy peaked BL Lac object 1E 1207.9+3945. Two recent observations have been performed by the XMM-Newton and Swift satellites; we carried out X-ray spectral analysis for both of them, and photometry in optical-ultraviolet filters for the Swift one. Combining the results thus obtained with archival data we built the long-term X-ray light curve, spanning a time interval of 26 years, and the Spectral Energy Distribution (SED) of this source. The light curve shows a large flux increasing, about a factor of six, in a time interval of a few years. After reaching its maximum in coincidence with the XMM-Newton pointing in December 2000 the flux decreased in later years, as revealed by Swift. The very good statistics available in the 0.5-10 keV XMM-Newton X-ray spectrum points out a highly significant deviation from a single power law. A log-parabolic model with a best fit curvature parameter of 0.25 and a peak energy at ~1 keV describes well the spectral shape of the synchrotron emission. The simultaneous fit of Swift UVOT and XRT data provides a milder curvature (b~0.1) and a peak at higher energies (~15 keV), suggesting a different state of source activity. In both cases UVOT data support the scenario of a single synchrotron emission component extending from the optical/UV to the X-ray band. New X-ray observations are important to monitor the temporal and spectral evolution of the source; new generation gamma-ray telescopes like AGILE and GLAST could for the first time detect its inverse Compton emission.Comment: 7 pages, 6 figures, accepted for publication in A&

    HESS J1632-478: an energetic relic

    Get PDF
    HESS J1632-478 is an extended and still unidentified TeV source in the galactic plane. In order to identify the source of the very high energy emission and to constrain its spectral energy distribution, we used a deep observation of the field obtained with XMM-Newton together with data from Molonglo, Spitzer and Fermi to detect counterparts at other wavelengths. The flux density emitted by HESS J1632-478 peaks at very high energies and is more than 20 times weaker at all other wavelengths probed. The source spectrum features two large prominent bumps with the synchrotron emission peaking in the ultraviolet and the external inverse Compton emission peaking in the TeV. HESS J1632-478 is an energetic pulsar wind nebula with an age of the order of 10^4 years. Its bolometric (mostly GeV-TeV) luminosity reaches 10% of the current pulsar spin down power. The synchrotron nebula has a size of 1 pc and contains an unresolved point-like X-ray source, probably the pulsar with its wind termination shock.Comment: A&A accepted, 9 pages, 5 figures, 4 table

    Swift observations of the very intense flaring activity of Mrk 421 during 2006: I. Phenomenological picture of electron acceleration and predictions for the MeV/GeV emission

    Get PDF
    We present results from a deep spectral analysis of all the Swift observations of Mrk 421 from April 2006 to July 2006, when it reached its largest X-ray flux recorded until 2006. The peak flux was about 85 milli-Crab in the 2.0-10.0 keV band, with the peak energy (Ep) of the spectral energy distribution (SED) laying often at energies larger than 10 keV. We performed spectral analysis of the Swift observations investigating the trends of the spectral parameters in terms of acceleration and energetic features phenomenologically linked to the SSC model parameters, predicting their effects in the gamma-ray band, in particular the spectral shape expected in the Fermi Gamma-ray Space Telescope-LAT band. We confirm that the X-ray spectrum is well described by a log-parabolic distribution close to Ep, with the peak flux of the SED (Sp) being correlated with Ep, and Ep anti-correlated with the curvature parameter (b). During the most energetic flares the UV-to-soft-X-ray spectral shape requires an electron distribution spectral index s about 2.3. Present analysis shows that the UV-to-X-ray emission from Mrk 421 is likely to be originated by a population of electrons that is actually curved, with a low energy power-law tail. The observed spectral curvature is consistent both with stochastic acceleration or energy dependent acceleration probability mechanisms, whereas the power-law slope form XRT-UVOT data is very close to that inferred from the GRBs X-ray afterglow and in agreement with the universal first-order relativistic shock acceleration models. This scenario hints that the magnetic turbulence may play a twofold role: spatial diffusion relevant to the first order process and momentum diffusion relevant to the second order process.Comment: Accepted, Astronomy and Astrophysic

    X-ray spectral evolution of TeV BL Lac objects: eleven years of observations with BeppoSAX, XMM-Newton and SWIFT satellites

    Full text link
    Many of the extragalactic sources detected in γ\gamma rays at TeV energies are BL Lac objects. In particular, they belong to the subclass of ``high frequency peaked BL Lacs" (HBLs), as their spectral energy distributions exhibit a first peak in the X-ray band. At a closer look, their X-ray spectra appear to be generally curved into a log-parabolic shape. In a previous investigation of Mrk 421, two correlations were found between the spectral parameters. One involves the height SpS_p increasing with the position EpE_p of the first peak; this was interpreted as a signature of synchrotron emission from relativistic electrons. The other involves the curvature parameter bb decreasing as EpE_p increases; this points toward statistical/stochastic acceleration processes for the emitting electrons. We analyse X-ray spectra of several TeV HBLs to pinpoint their behaviours in the EpSpE_p-S_p and EpbE_p-b planes and to compare them with Mrk 421. We perfom X-ray spectral analyses of a sample of 15 BL Lacs. We report the whole set of observations obtained with the \sax, \xmm and \swf satellites between 29/06/96 and 07/04/07. We focus on five sources (PKS 0548-322, 1H 1426+418, Mrk 501, 1ES 1959+650, PKS2155-304) whose X-ray observations warrant detailed searching of correlations or trends. Within our database, we find that four out of five sources, namely PKS 0548-322, 1H 1426+418, Mrk 501 and 1ES 1959+650, follow similar trends as Mrk 421 in the EpSpE_p-S_p plane, while PKS 2155-304 differs. As for the EpbE_p-b plane, all TeV HBLs follow a similar behaviour. The trends exhibited by Mrk 421 appear to be shared by several TeV HBLs, such as to warrant discussing predictions from the X-ray spectral evolution to that of TeV emissions.Comment: 14 pages, 9 figures, A&A accepte

    The PCA Lens-Finder: application to CFHTLS

    Full text link
    We present the results of a new search for galaxy-scale strong lensing systems in CFHTLS Wide. Our lens-finding technique involves a preselection of potential lens galaxies, applying simple cuts in size and magnitude. We then perform a Principal Component Analysis of the galaxy images, ensuring a clean removal of the light profile. Lensed features are searched for in the residual images using the clustering topometric algorithm DBSCAN. We find 1098 lens candidates that we inspect visually, leading to a cleaned sample of 109 new lens candidates. Using realistic image simulations we estimate the completeness of our sample and show that it is independent of source surface brightness, Einstein ring size (image separation) or lens redshift. We compare the properties of our sample to previous lens searches in CFHTLS. Including the present search, the total number of lenses found in CFHTLS amounts to 678, which corresponds to ~4 lenses per square degree down to i=24.8. This is equivalent to ~ 60.000 lenses in total in a survey as wide as Euclid, but at the CFHTLS resolution and depth.Comment: 21 pages, 12 figures, accepted for publication on A&

    Log-parabolic spectra and particle acceleration in blazars. III: SSC emission in the TeV band from Mkn 501

    Full text link
    Curved broad-band spectral distributions of non-thermal sources like blazars are described well by a log-parabolic (LP) law where the second degree term measures the curvature. LP energy spectra can be obtained for relativistic electrons by means of a statistical acceleration mechanism whose probability of acceleration depends on energy. In this paper we compute the spectra radiated by an electron population via synchrotron (S) and Synchro-Self Compton(SSC) processes to derive the relations between the LP parameters. These spectra were obtained by means of an accurate numerical code. We found that the ratio between the curvature parameters of the S spectrum to that of the electrons is equal to about 0.2 instead of 0.25, the value foreseen in the delta approximation. Inverse Compton spectra are also intrinsically curved and can be approximated by a log-parabola only in limited ranges. The curvature parameter, estimated around the SED peak, may vary from a lower value than that of the S spectrum up to that of emitting electrons depending on whether the scattering is in the Thomson or in the Klein-Nishina regime. We applied this analysis to computing the SSC emission from the BL Lac object Mkn 501 during the large flare of April 1997. We fit simultaneous BeppoSAX and CAT data and reproduced intensities and spectral curvatures of both components with good accuracy. The large curvature observed in the TeV range was found to be mainly intrinsic, and therefore did not require a large pair production absorption against the extragalactic background. We regard this finding as an indication that the Universe is more transparent at these energies than previously assumed by several models found in the literature. This conclusion is supported by recent detection of two relatively high redshift blazars with H.E.S.S.Comment: Comments: 12 pages, 11 figures. Accepted for publication in the Astronomy and Astrophysic

    Organic farming systems for adaptation to and mitigation of climate change: Effects on soil fertility and resource use efficiency

    Get PDF
    Organic farming is pointed as one of the most sustainable farming practices in terms of environmental sustainability and climate change mitigation potential. At the core of organic farming practices there are practices aimed at improving soil fertility, increasing soil C content and enhancing system biodiversity. A long-term field experiment (LTE) (MASCOT) was started on 2001 in San Piero a Grado, Pisa (Italy) with the aim to compare two different cropping systems, one managed organically and one conventionally, in terms of agronomical, economic and environmental sustainability. In 2016, the MASCOT was redesigned as a full system trial and the organic system was reshaped according to up to date agroecological standards. Climate change adaptation capacity of the two systems is being assessed through agronomic and economic parameters, whilst greenhouse gas emission mitigation potential is mainly expressed in terms of soil C sequestration
    corecore