33 research outputs found
B-fields and Dust in Interstellar Filaments Using Dust Polarization (BALLAD-POL). I. The Massive Filament G11.11â0.12 Observed by SOFIA/HAWC+
We report the first measurement of polarized thermal dust emission toward the entire infrared dark cloud G11.11â0.12 taken by the polarimeter SOFIA/HAWC+ at 214 ÎŒm. The obtained magnetic fields (B-fields) from the polarized emission of the early-stage and massive filament tend to be perpendicular to its spine. We produce a map of B-field strengths for the center region of the filament. The strengths vary in the range of 100â600 ÎŒG and are strongest along the filament's spine. The central region is sub-AlfvĂ©nic and mostly subcritical, meaning that B-fields dominate over turbulence and are strong enough to resist gravitational collapse. The alignment and properties of dust grains in the filament are studied using radiative torque (RAT) theory. We find the decrease of polarization degree P with emission intensity I, i.e., depolarization effect, of the form Pâ Iâα ⌠0.8â0.9, implying a significant loss of grain alignment in the filament's spine. The depolarization can be explained by the decrease in RAT alignment efficiency toward the denser regions with weaker radiation field, which cannot be explained by B-field tangling. We study the effect of the enhanced magnetic relaxation by embedded iron inclusions on RAT alignment and find that the high polarization fraction P ⌠20%â30% in the outer layer of the filament is potential evidence for the magnetically enhanced RAT alignment mechanism. This is the first time this effect is evaluated in a filament. Based on the polarization fraction and RAT alignment theory, we also find evidence for grain growth in the filament
Tryptophan metabolism determines outcome in tuberculous meningitis: a targeted metabolomic analysis
Background:Â Cellular metabolism is critical for the host immune function against pathogens, and metabolomic analysis may help understand the characteristic immunopathology of tuberculosis. We performed targeted metabolomic analyses in a large cohort of patients with tuberculous meningitis (TBM), the most severe manifestation of tuberculosis, focusing on tryptophan metabolism.
Methods:Â We studied 1069 Indonesian and Vietnamese adults with TBM (26.6% HIV-positive), 54 non-infectious controls, 50 with bacterial meningitis, and 60 with cryptococcal meningitis. Tryptophan and downstream metabolites were measured in cerebrospinal fluid (CSF) and plasma using targeted liquid chromatographyâmass spectrometry. Individual metabolite levels were associated with survival, clinical parameters, CSF bacterial load and 92 CSF inflammatory proteins.
Results:Â CSF tryptophan was associated with 60-day mortality from TBM (hazard ratio [HR] = 1.16, 95% confidence interval [CI] = 1.10â1.24, for each doubling in CSF tryptophan) both in HIV-negative and -positive patients. CSF tryptophan concentrations did not correlate with CSF bacterial load nor CSF inflammation but were negatively correlated with CSF interferon-gamma concentrations. Unlike tryptophan, CSF concentrations of an intercorrelating cluster of downstream kynurenine metabolites did not predict mortality. These CSF kynurenine metabolites did however correlate with CSF inflammation and markers of bloodâCSF leakage, and plasma kynurenine predicted death (HR 1.54, 95% CI = 1.22â1.93). These findings were mostly specific for TBM, although high CSF tryptophan was also associated with mortality from cryptococcal meningitis.
Conclusions:Â TBM patients with a high baseline CSF tryptophan or high systemic (plasma) kynurenine are at increased risk of death. These findings may reveal new targets for host-directed therapy
Virulence of Mycobacterium tuberculosis Clinical Isolates Is Associated With Sputum Pre-treatment Bacterial Load, Lineage, Survival in Macrophages, and Cytokine Response
It is uncertain whether differences in Mycobacterium tuberculosis (Mtb) virulence defined in vitro influence clinical tuberculosis pathogenesis, transmission, and mortality. We primarily used a macrophage lysis model to characterize the virulence of Mtb isolates collected from 153 Vietnamese adults with pulmonary tuberculosis. The virulence phenotypes were then investigated for their relationship with sputum bacterial load, bacterial lineages, bacterial growth, and cytokine responses in macrophages. Over 6 days of infection, 34 isolates (22.2%) showed low virulence (< 5% macrophages lysed), 46 isolates (30.1%) showed high virulence (â„90% lysis of macrophages), and 73 isolates (47.7%) were of intermediate virulence (5â90% macrophages lysed). Highly virulent isolates were associated with an increased bacterial load in patients' sputum before anti-tuberculosis therapy (P = 0.02). Isolate-dependent virulence phenotype was consistent in both THP-1 and human monocyte-derived macrophages. High virulence isolates survived better and replicated in macrophages one hundred fold faster than those with low virulence. Macrophages infected with high virulence isolates produced lower concentrations of TNF-α and IL-6 (P = 0.002 and 0.0005, respectively), but higher concentration of IL-1ÎČ (P = 5.1 Ă 10â5) compared to those infected with low virulence isolates. High virulence was strongly associated with East Asian/Beijing lineage [P = 0.002, Odd ratio (OR) = 4.32, 95% confident intervals (CI) 1.68â11.13]. The association between virulence phenotypes, bacterial growth, and proinflammatory cytokines in macrophages suggest the suppression of certain proinflammatory cytokines (TNF-α and IL-6) but not IL-1ÎČ allows better intracellular survival of highly virulent Mtb. This could result in rapid macrophage lysis and higher bacterial load in sputum of patients infected with high virulence isolates, which may contribute to the pathogenesis and success of the Beijing lineage
Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry
We have obtained sensitive dust continuum polarization observations at 850 ÎŒm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (âŒ2000 au or âŒ0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38±14 ÎŒG, 44±16 ÎŒG, and 12±5 ÎŒG, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux
Observations of Magnetic Fields Surrounding LkH alpha 101 Taken by the BISTRO Survey with JCMT-POL-2
We report the first high spatial resolution measurement of magnetic fields surrounding LkHα 101, part of the AurigaâCalifornia molecular cloud. The observations were taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope within the framework of the B-fields In Star-forming Region Observations (BISTRO) survey. Observed polarization of thermal dust emission at 850 ÎŒm is found to be mostly associated with the redshifted gas component of the cloud. The magnetic field displays a relatively complex morphology. Two variants of the DavisâChandrasekharâFermi method, unsharp masking and structure function, are used to calculate the strength of magnetic fields in the plane of the sky, yielding a similar result of BPOS ~ 115 ÎŒG. The mass-to-magnetic-flux ratio in critical value units, λ ~ 0.3, is the smallest among the values obtained for other regions surveyed by POL-2. This implies that the LkHα 101 region is subcritical, and the magnetic field is strong enough to prevent gravitational collapse. The inferred ÎŽB/B0 ~ 0.3 implies that the large-scale component of the magnetic field dominates the turbulent one. The variation of the polarization fraction with total emission intensity can be fitted by a power law with an index of α = 0.82 ± 0.03, which lies in the range previously reported for molecular clouds. We find that the polarization fraction decreases rapidly with proximity to the only early B star (LkHα 101) in the region. Magnetic field tangling and the joint effect of grain alignment and rotational disruption by radiative torques can potentially explain such a decreasing trend
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950â2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020â21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5â65·1] decline), and increased during the COVID-19 pandemic period (2020â21; 5·1% [0·9â9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98â5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50â6·01) in 2019. An estimated 131 million (126â137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7â17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8â24·8), from 49·0 years (46·7â51·3) to 71·7 years (70·9â72·5). Global life expectancy at birth declined by 1·6 years (1·0â2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67â8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4â52·7]) and south Asia (26·3% [9·0â44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950â2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020â21 COVID-19 pandemic period. METHODS: 22â223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30â763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31â642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5â65·1] decline), and increased during the COVID-19 pandemic period (2020â21; 5·1% [0·9â9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98â5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50â6·01) in 2019. An estimated 131 million (126â137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7â17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100â000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8â24·8), from 49·0 years (46·7â51·3) to 71·7 years (70·9â72·5). Global life expectancy at birth declined by 1·6 years (1·0â2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67â8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4â52·7]) and south Asia (26·3% [9·0â44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Recommended from our members
The JCMT BISTRO Survey: Revealing the Diverse Magnetic Field Morphologies in Taurus Dense Cores with Sensitive Submillimeter Polarimetry
Abstract
We have obtained sensitive dust continuum polarization observations at 850 ÎŒm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope as part of the B-fields in STar-forming Region Observations (BISTRO) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (âŒ2000 au or âŒ0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the DavisâChandrasekharâFermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38 ± 14, 44 ± 16, and 12 ± 5 ÎŒG, respectively. These cores show distinct mean B-field orientations. The B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. The B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field and not well correlated with other axes. In contrast, Miz-8b exhibits a disordered B-field that shows no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux.</jats:p