4 research outputs found

    CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development

    Get PDF
    Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny

    Epigenetic dysregulation in the developing Down syndrome cortex

    No full text
    <p>Using Illumina 450K arrays, 1.85% of all analyzed CpG sites were significantly hypermethylated and 0.31% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3–11 times more hyper- than hypo-methylated sites. Reduced <i>NRSF/REST</i> expression due to upregulation of <i>DYRK1A</i> (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of <i>DNMT3L</i> (on chromosome 21q22.4) could lead to <i>de novo</i> methylation in neuroprogenitors, which then persists in the fetal DS brain where <i>DNMT3A</i> and <i>DNMT3B</i> become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (<i>PCDHG</i>) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of <i>PCDHG</i> subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased <i>PCDHG</i> expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of <i>PCDHG</i> and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.</p
    corecore