26 research outputs found

    The Automation of Software Development Metrics

    Get PDF
    With the push to streamline medical records and the use of electronic medical records system technology on the rise, successful implementation is important. The push is due in part for the need to reduce unnecessary paperwork, increase reimbursement, increase quality of medical records and increase overall quality of care. Factors to consider are the effects of implementation on quality of care, quality of medical records, physician and staff perceptions, working conditions, patient satisfaction, cost and barriers. Implementation may have a positive, negative or neutral effect on these factors making the need to review literature and report outcomes significant

    Image resampling and discretization effect on the estimate of myocardial radiomic features from T1 and T2 mapping in hypertrophic cardiomyopathy

    Get PDF
    Radiomics is emerging as a promising and useful tool in cardiac magnetic resonance (CMR) imaging applications. Accordingly, the purpose of this study was to investigate, for the first time, the effect of image resampling/discretization and filtering on radiomic features estimation from quantitative CMR T1 and T2 mapping. Specifically, T1 and T2 maps of 26 patients with hypertrophic cardiomyopathy (HCM) were used to estimate 98 radiomic features for 7 different resampling voxel sizes (at fixed bin width), 9 different bin widths (at fixed resampling voxel size), and 7 different spatial filters (at fixed resampling voxel size/bin width). While we found a remarkable dependence of myocardial radiomic features from T1 and T2 mapping on image filters, many radiomic features showed a limited sensitivity to resampling voxel size/bin width, in terms of intraclass correlation coefficient (> 0.75) and coefficient of variation (< 30%). The estimate of most textural radiomic features showed a linear significant (p < 0.05) correlation with resampling voxel size/bin width. Overall, radiomic features from T2 maps have proven to be less sensitive to image preprocessing than those from T1 maps, especially when varying bin width. Our results might corroborate the potential of radiomics from T1/T2 mapping in HCM and hopefully in other myocardial diseases

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease
    corecore