1,282 research outputs found
State reconstruction by on/off measurements
We demonstrate a state reconstruction technique which provides either the
Wigner function or the density matrix of a field mode and requires only
avalanche photodetectors, without any phase or amplitude discrimination power.
It represents an alternative, of simpler implementation, to quantum homodyne
tomography.Comment: 6 pages, 4 figures, revised and enlarged versio
Quantum state reconstruction using binary data from on/off photodetection
The knowledge of the density matrix of a quantum state plays a fundamental
role in several fields ranging from quantum information processing to
experiments on foundations of quantum mechanics and quantum optics. Recently, a
method has been suggested and implemented in order to obtain the reconstruction
of the diagonal elements of the density matrix exploiting the information
achievable with realistic on/off detectors, e.g. silicon avalanche
photo-diodes, only able to discriminate the presence or the absence of light.
The purpose of this paper is to provide an overview of the theoretical and
experimental developments of the on/off method, including its extension to the
reconstruction of the whole density matrix.Comment: revised version, 11 pages, 6 figures, to appear as a review paper on
Adv. Science Let
Native NIR-emitting single colour centres in CVD diamond
Single-photon sources are a fundamental element for developing quantum
technologies, and sources based on colour centres in diamonds are among the
most promising candidates. The well-known NV centres are characterized by
several limitations, thus few other defects have recently been considered. In
the present work, we characterize in detail native efficient single colour
centres emitting in the near infra-red in both standard IIa single-crystal and
electronic-grade polycrystalline commercial CVD diamond samples. In the former
case, a high-temperature annealing process in vacuum is necessary to induce the
formation/activation of luminescent centres with good emission properties,
while in the latter case the annealing process has marginal beneficial effects
on the number and performances of native centres in commercially available
samples. Although displaying significant variability in several photo physical
properties (emission wavelength, emission rate instabilities, saturation
behaviours), these centres generally display appealing photophysical properties
for applications as single photon sources: short lifetimes, high emission rates
and strongly polarized light. The native centres are tentatively attributed to
impurities incorporated in the diamond crystal during the CVD growth of
high-quality type IIa samples, and offer promising perspectives in
diamond-based photonics.Comment: 27 pages, 10 figures. Submitted to "New Journal of Phsyics",
NJP-100003.R
Recent experiments performed at "Carlo Novero" lab at INRIM on Quantum Information and Foundations of Quantum Mechanics
In this paper we present some recent work performed at "Carlo Novero" lab on
Quantum Information and Foundations of Quantum Mechanics.Comment: Contribution to III international workshop "Recent advances in
Foundations of Quantum Mechanics and Quantum Information. In memory of Carlo
Novero
Direct experimental observation of nonclassicality in ensembles of single photon emitters
In this work we experimentally demonstrate for the first time a recently
proposed criterion adressed to detect nonclassical behavior in the fluorescence
emission of ensembles of single-photon emitters. In particular, we apply the
method to study clusters of NV centres in diamond observed via
single-photon-sensitive confocal microscopy. Theoretical considerations on the
behavior of the parameter at any arbitrary order in presence of poissonian
noise are presented and, finally, the opportunity of detecting manifold
coincidences is discussed
Towards joint reconstruction of noise and losses in quantum channels
The calibration of a quantum channel, i.e. the determination of the
transmission losses affecting it, is definitely one of the principal objectives
in both the quantum communication and quantum metrology frameworks. Another
task of the utmost relevance is the identification, e.g. by extracting its
photon number distribution, of the noise potentially present in the channel.
Here we present a protocol, based on the response of a photon-number-resolving
detector at different quantum efficiencies, able to accomplish both of these
tasks at once, providing with a single measurement an estimate of the
transmission losses as well as the photon statistics of the noise present in
the exploited quantum channel. We show and discuss the experimental results
obtained in the practical implementation of such protocol, with different kinds
and levels of noise.Comment: 6 pages, 4 figure
Self consistent, absolute calibration technique for photon number resolving detectors
Well characterized photon number resolving detectors are a requirement for
many applications ranging from quantum information and quantum metrology to the
foundations of quantum mechanics. This prompts the necessity for reliable
calibration techniques at the single photon level. In this paper we propose an
innovative absolute calibration technique for photon number resolving
detectors, using a pulsed heralded photon source based on parametric down
conversion. The technique, being absolute, does not require reference standards
and is independent upon the performances of the heralding detector. The method
provides the results of quantum efficiency for the heralded detector as a
function of detected photon numbers. Furthermore, we prove its validity by
performing the calibration of a Transition Edge Sensor based detector, a real
photon number resolving detector that has recently demonstrated its
effectiveness in various quantum information protocols.Comment: 9 pages, 2 figure
Single-photon-emitting optical centers in diamond fabricated upon Sn implantation
The fabrication of luminescent defects in single-crystal diamond upon Sn
implantation and annealing is reported. The relevant spectral features of the
optical centers (emission peaks at 593.5 nm, 620.3 nm, 630.7 nm and 646.7 nm)
are attributed to Sn-related defects through the correlation of their
photoluminescence (PL) intensity with the implantation fluence. Single
Sn-related defects were identified and characterized through the acquisition of
their second-order auto-correlation emission functions, by means of
Hanbury-Brown-Twiss interferometry. The investigation of their single-photon
emission regime as a function of excitation laser power revealed that
Sn-related defects are based on three-level systems with a 6 ns radiative decay
lifetime. In a fraction of the studied centers, the observation of a blinking
PL emission is indicative of the existence of a dark state. Furthermore,
absorption dependence from the polarization of the excitation radiation with
about 45 percent contrast was measured. This work shed light on the existence
of a new optical center associated with a group-IV impurity in diamond, with
similar photo-physical properties to the already well-known Si-V and Ge-V
emitters, thus providing results of interest from both the fundamental and
applicative points of view.Comment: 10 pages, 4 figure
- …
