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Direct experimental observation of nonclassicality in ensembles of single-photon emitters
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In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical
behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method
to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal
microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of
Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.
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I. INTRODUCTION

One of the most debated issues in quantum mechanics is
related to understanding the boundary separating the counter-
intuitive behavior of the systems governed by the quantum laws
from the classical, familiar properties of the macroscopical
systems. This transition also manifests itself in the realm of
optics [1] where, even if undoubtedly the radiation emitted by
any possible source of light is indeed composed by an ensemble
of individual photons, the properties of classical sources differ
consistently from those of nonclassical ones. In particular,
single-photon sources (SPSs) have found many experimental
and reliable realizations in systems such as heralded sources
based on parametric down-conversion [2–9], quantum dots
[10,11], trapped ions [12], molecules [13], and color centers
in diamond [14–21]. Since nonclassical optical states have
now become a fundamental resource for quantum technology
[22,23], the determination of nonclassicality [24] for a state
is not only important for studies concerning boundaries from
quantum to classical world, but also represents an important
tool for quantifying such resources. Vast literature exists on
the characterization of SPSs [25]. Most of the techniques rely
on the sampling of the second-order autocorrelation function
(or Glauber function)

g(2)(τ = 0) = 〈I (t)I (t + τ )〉
〈I (t)〉〈I (t + τ )〉

∣∣∣∣
τ=0

, (1)

whose value is never smaller than 1 for classical light,
while it is lower than 1 for sub-Poissonian light, and in
particular vanishes for single-photon states, where g(2)(0) = 0
is expected in the ideal case. This quantity has been shown
to be substantially equivalent to the parameter α introduced
by Grangier et al. [26] (and throughout the paper we will
refer to this parameter as g(2) without distinction), which is
experimentally measured as the ratio between the coincidence
probability at the ouput of a Hanbury Brown and Twiss
interferometer (HBT) [27], typically a 50:50 beam splitter
connected to two non-photon-number-resolving (non-PNR)
detectors, and the product of the click probabilities at the two
detectors [22]. This parameter can be generalized to account
for the statistical properties of N -fold coincidence events at
the outputs of detector-tree apparatuses and several techniques
for the reconstruction of optical states as well as quantum

enhanced imaging techniques are allowed by the experimental
sampling of g(N) functions [28–44]. Unfortunately, the amount
of background light can affect the measurement, leading to a
camouflage of the quantum characteristics due to noise. More
specifically, in practical cases, when sampling g(2)(0) to char-
acterize single emitters it is not possible to distinguish between
the true quantum signal and background light contribution and,
in extreme cases, one is not able to detect a single emitter
drowned in dominant noise bath. Recently a novel criterion
allowing one to reveal no-classical light from large numbers
of independent SPSs has been proposed [45]. According to the
theoretical predictions, an experimental implementation of this
criterion would be extremely advantageous not only because it
would allow one to spot nonclassical signatures in the emission
of clusters of emitters, but also because it can be shown that
this technique is extremely robust in the presence of Poissonian
noise, the parameter under test being absolutely independent
from this kind of noise contribution (even when it is dominant).

In this work we experimentally apply the criterion [45] to
directly detect nonclassical emission from ensembles of SPSs
based on nitrogen-vacancy (NV) centers in nanodiamond
observed by means of a confocal microscope coupled to
four non-PNR single-photon detectors in a detector-tree
configuration. Although the reported methodology can be
generally extended to a broad range of different physical
systems, NV defects in diamond have been elected to
benchmark this new criterion. This choice is motivated by the
high relevance of this physical system in quantum optics due
to its appealing spin-dependent transition structure, as widely
demonstrated by a broad range of works on the subject in
recent years [46]. Moreover, the choice is motivated by the
fact that generally the quantum-optical characterization of
individual photon emitters in solid-state systems (such as NV
and other color centers in diamond) is significantly affected
by complex issues in the correct assessment of sources of
background luminescence in confocal microscopy, such as
nearby defects, scattered light, diffused fluorescence from
extended defects, ambient light, etc. [14,17], which are not
always easily manageable, or duly taken into account.

II. THEORETICAL MODEL

In general, the system considered here is an ensemble
of M single-photon emitters, each coupled to the detection
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system with an efficiency ηα (α = 1, . . . ,M), detected by N

non-PNR detectors connected by a generalized N -dimensional
beam splitter (BS). Each detection channel has an overall
efficiency (due to BS unbalance and detector efficiency) ξi

(i = 1, . . . ,N ). Generally, n incoming photons entering in
the detector tree are distributed in the N channels following
the multinomial probability n!∏N

i=1 ki !
( 1
N

)n corresponding to ki

photons in the ith channel (satisfying
∑

i ki = n). In each
channel of the detector tree, the probability of observing a
no-click event given ki photons is (1 − ξi)ki , thus the click
probability is 1 − (1 − ξi)ki , since the positive operator-valued
measurements (POVM) of a non-PNR single-photon detector
at the end of each channel of the detector tree are

Q̂click =
+∞∑
n=0

[1 − (1 − ξi)
n]|n〉〈n|, (2)

Q̂no-click =
+∞∑
n=0

(1 − ξi)
n|n〉〈n|. (3)

Starting from this, it is possible to define the POVM of the
single detection of the detector tree as

Q̂
[Single]
[i] (0) =

+∞∑
n=0

Q
[Single]
[i] (0|n)|n〉〈n|, (4)

Q̂
[Single]
[i] (1) = Î − Q̂

[Single]
[i] (0), (5)

where Q
[Single]
[i] (0|n) = (1 − ξi/N)n is the probability that 0

out of n incoming photons are detected per excitation pulse.
Since the measurement is phase insensitive, the operators have
diagonal form in the Fock basis and, due to the nature of
non-PNR detectors (able only to distinguish between dark and
light) the possible outcomes are “0” (the detector does not
click) and “1” (the detector clicks).

Analogously, one can obtain the POVM associated to the
no-click in all the outputs of the detector tree as

Q̂[⊗N](0) =
+∞∑
n=0

Q[⊗N](0|n)|n〉〈n|, (6)

where Q[⊗N](0|n) = (1 −
∑N

i=1ξi

N
)n.

Finally, the POVM of N -fold coincidence results in

Q̂[⊗N](N ) =
+∞∑
n=0

Q[⊗N](N |n)|n〉〈n|, (7)

where Q[⊗N](N |n) has in general a nontrivial form, but under
the hypothesis that the detection system is a tree of perfectly
balanced identical detectors (ξi = ξ,∀i), it reduces to

Q[⊗N](N |n) =
N∑

r=0

(−1)r
N !

r!(N − r)!

(
1 − rξ

N

)n

. (8)

The latter assumption of perfectly balanced detector- tree does
not limit the general validity of the discussion because it can be
shown that also without this hypothesis the technique preserves
its noise-resilience properties (see Appendix D).

FIG. 1. Experimental setup: (a) XYZ piezoelectric stage,
(b) sample, (c) oil immersion objective, (d) excitation light, (e)
dichroic mirror, (f) coincidence electronics, (g) long-pass filters, (h)
50:50 beam splitter, and (i) single-photon detectors.

The generalized g(N)(0) function is thus expressed in terms
of detection probabilities as

g(N)(0) = Pclick⊗N∏N
i=1 Pclick[i]

, (9)

where Pclick⊗N = tr[ρ̂Q̂[⊗N](N )] is the probability of N -fold
coincidence at the output of the detector tree, and Pclick[i] =
tr[ρ̂Q̂

[Single]
[i] (1)] is the probability for the ith detector to fire,

ρ̂ being the density matrix describing the quantum state of
the ensemble of emitters. As stated above, the condition
g(N)(0) = 1 can be adopted to discriminate between classical
and nonclassical states, while ideally g(N)(0) = 0 for any order
of N for single-photon states. Instead, the nonclassicality
criterion under study [45] is expressed by the fact that for
any classical system the following proposition is verified:

θ (N)(0) = P0⊗N∏N
i=1 P0[i]

> 1, (10)

where P0[i] = tr[ρ̂Q̂
[Single]
[i] (0)] is the no-click probability at

the ith detector and P0⊗N = tr[ρ̂Q̂[⊗N](0)] is the probability
that all the N detectors of the detector-tree do not click in
correspondence of an excitation event.

III. EXPERIMENTAL SETUP

We perform the comparison of the behaviors of g(2) and θ (2)

exploiting different ensembles of single-photon emitters with
different levels of background Poissonian noise in synthetic
Ib nanodiamond (ND) powders produced by ElementSix
by fragmentation of high-pressure-high-temperature (HPHT)
synthetic diamond (see Appendix A). The sample is observed
via a single-photon-sensitive confocal microscope connected
to a detector-tree configuration of four detectors (Fig. 1). The
excitation light is provided by a solid-state laser at 532 nm
(PICOQUANT LDH-PFA-530L) in pulsed regime (5 MHz
repetition rate, 50 ps FWHM) whose output is coupled into a
single-mode fiber and then collimated by a 4× objective. A
dichroic mirror (long-pass at 570 nm) reflects the excitation
light (3 mW maximum) inside the oil immersion objective
(Olympus, 100×, NA = 1.3 ) focusing inside the sample and
transmits the fluorescence light (640–800 nm, coupled by the
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FIG. 2. Typical fluorescence map of the selected area of the
sample obtained with the single-photon-sensitive confocal micro-
scope. The three highlighted spots correspond to the objects under
study. The acquisition software used is “Qudi,” developed at Ulm
University [48].

same objective) toward the detecting apparatus. A closed-loop
XYZ piezoelectric stage, remotely controlled via PC, allows
submicrometric-resolution positioning in an 80 μm × 80 μm
area. A long-pass filter allows obtaining a suitable attenuation
of the pump component. Then, the signal is focused by an
f = 100 mm achromatic doublet and coupled to a 50 μm
multimode optical fiber. The fiber leads to a detector-tree
configuration realized by means of three integrated 50:50
beam splitters in cascade connecting to four single photon
avalanche photodiodes (Perkin-Elmer SPCM-AQR), operating
in Geiger mode. This configuration, reproducing six nonmu-
tually independent HBT interferometers (or equivalently two
completely independent HBT interferometers) [27], allows the
detection of all the twofold coincidences among the detection
channels and to obtain six estimates of the second-order
autocorrelation functions (g(2)). The signal counts and coinci-
dences are measured via an Id Quantique ID800 time-to-digital
converter. The pulses (60 ps FWHM) of the laser simulating
the Poissonian noise (PICOQUANT LDH-D-C-690), emitting
at 685 nm, inside the detection window, were electronically
synchronized with the excitation laser emission. This laser
was directly coupled to the pinhole of the detection system.

IV. RESULTS

We implemented the measurement of g(2) and θ (2) by the
characterization of three fluorescent objects in a nanodiamond
sample (see Fig. 3). To perform this study, the width of the time
window (40 ns) was chosen to be compatible with the lifetime
of the centers (around 25 ns). The objects under study (see
Fig. 2) are dubbed Item-1, Item-2, and Item-3. Item-1 is not
far from a single-photon emitter having g(2) value below 0.5
[g(2)

I1
(0) = 0.407 ± 0.012] [47] if no artificial noise is added,

while Item-2 and Item-3 are clusters of unknown quantities of
single-photon emitters [respectively, g

(2)
I2

(0) = 0.832 ± 0.004

and g
(2)
I3

(0) = 0.66 ± 0.01, always without noise]. The overall
efficiency of the system has been estimated as (1.582 ±

FIG. 3. (a) Plot of g
(2)
I1

(0). (b) Plot of θ
(2)
I1

(0). (c) Plot of g
(2)
I2

(0).

(d) Plot of θ
(2)
I2

(0). (e) Plot of g
(2)
I3

(0). (f) Plot of θ
(2)
I3

(0). All values
were measured for three different levels of Poissonian noise (1: noise
off; 2: 10 000 counts/s due to noise; 3: 25 000 counts/s due to noise).
Each measure is the average of ten runs, coincidences registered in
every twofold combination of the detector-tree branches, of 200 s.
Excitation rate is 5 MHz. The red dot in (a) and (b) corresponds to a
successive repetition of the first measurement to test the stability of
the apparatus.

0.002)% (calculated as the ratio between the emission rate of
Item-1 and the excitation rate). In order to simulate Poissonian
noise, a laser source at a wavelength falling in the detection
spectral window was reflected directly in the coupling pinhole
of the microscope. To analyze the robustness of the two
parameters against noise, measurements on each sample were
performed in the absence of noise and in the presence of two
different values of intensity of the noise source. These two
noise levels, estimated in terms of counts/s observed by the
HBT system as a whole, in the absence of single-photon source
emissions are 10 000 counts/s and 25 000 counts/s.

For testing the stability of the experimental system, the
measurement without Poissonian noise was repeated after the
measurement including noise and the g and θ parameters are
found to be consistent with the first measurements (Fig. 3). As
an example, this measurement in the case of Item-1 is shown
as a red dot. Also, to test the capability of our setup to detect
nonclassical behavior, we performed the measurement of θ (2)

and g(2) parameters on the light reflected by a nonfluorescent
nanodiamond present in the sample (Item-4 in Fig. 2). This
kind of object is not distinguishable from the emitters in
a confocal map but does not produce antibunching (being
produced by coherent light) and can be recongnized only from
its spectral features. As expected, this object showed clear
signatures of classical emission [1 − g(2)(0) = 0.004 ± 0.005,
1 − θ (2)(0) = (−4 ± 2) ∗ 10−8].
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FIG. 4. (a) Click probabilities at the four outputs of the detector-
tree while observing Item-3. The style of the line (continuous/dashed)
distinguishes between the outputs of the two independent BS
constituting the detector-tree. (c) and (d) values, respectively, of
g(2)(0) and θ (2)(0) measured for each twofold combination among
the four outputs of the detector-tree while observing Item-3. Same
measurement settings as Fig. 3. In (b)–(d) the continuous lines mark
the two independent twofold coincidences.

V. DISCUSSION

As expected from the analysis in Ref. [45], the exper-
imental data (Fig. 3) clearly demonstrate the advantages
of the nonclassicality criterion based on θ (2) with respect
to g(2): firstly, the parameter estimation is more robust
against Poissonian noise since the three θ (2) values for
each object are perfectly compatible, while g(2) values dif-
fer considerably for different noise contributions; secondly,
the deviation from classicality is even stronger when the
object under study is not a single emitter but instead an
ensemble of them. This is supported by two observations:
(i) the deviation from the classical value in terms of θ (2) is larger
for clusters characterized by a greater g(2) value with respect
to the others (measured in the same conditions); (ii) the raw
data regarding the two-, three- and fourfold coincidence events
(not reported here) show significantly different multiphoton
coincidence behavior for the three objects. Those events are
rare for Item-1, they are significantly occurring for Item-3,
and they are definitely more frequent for Item-2, justifying
the conclusion that the number of centers in each cluster
increases accordingly. For this reason this method allows
detecting nonclassical behavior of quantum emitters without
the necessity of isolating a single one. On the other hand,
the θ (2) function presents some disadvantages, since its value
depends strongly on the efficiency of the channel ξ (including
detection efficiency and splitting ratio of the detector-tree; see
the Appendices) as opposed to g(2) which is independent from
the balance of the branches of the detector tree. This can be
observed in the plots in Fig. 4, where respectively, the click
probabilities of the single channels [inset (a)], the twofold
coincidence probabilities [inset (b)], and the experimental g(2)

[inset (c)] and θ (2) [inset (d)] values in the characterization of
Item-3 are shown. It results that the unbalance of the detector
tree in terms of detection efficiency which is observable in
Fig. 4(a), is compensated when sampling g(2) [Fig. 4(c)],

delivering six fairly consistent estimates, while the values of
θ (2) obtained for different pairs of channels are not consistent
[Fig. 4(d)]. This results in a rather large uncertainty (calculated
as the standard deviation of the six sampled quantities) in the
mean θ (2) values plotted in Figs. 3(b), 3(d) and 3(e). One must
be reminded anyway that the average of the latter values is
below the classical limit within a 3σ confidence level [as can
be observed in Fig. 3(f)] thus this inconsistency does not affect
the observation of nonclassical behavior. See Tables III and IV
of Appendix B for data collected by a single beam splitter
(showing smaller uncertainty).

In our experiment we limited the analysis to the second
order of correlation of θ and g functions. Since the family
of nonclassicality criteria under test is defined for any
arbitrary order, it is reasonable to investigate the possible
advantages/disadvantages of experimentally sampling three-
and fourfold coincidences as well. The calculations on the
behavior of the θ (N) functions clearly reveal the independence
of the value of the parameter with respect to the noise level
for all the orders of correlation, exactly as we observed in
the second-order case and at variance with the behavior of g

functions (see Appendix C). Even if our detection apparatus is
capable of detecting up to fourfold coincidences, for the three
objects under study the three- and fourfold coincidence rates
were extremely low (respectively, 10−7 and 10−9; less than
the associated statistical uncertainty for the brightest object,
Item-2), so that no significant consideration on high-order
behavior could be extracted in our experimental conditions.

VI. SUMMARY AND CONCLUSIONS

In conclusion, in this paper we experimentally demon-
strated the advantage of nonclassicality criteria based on θ (N)

function proposed in Ref. [45] compared to g(N) characteriza-
tion. The most important of these advantages is the resilience
to Poissonian noise affecting the source. This technique has
the drawback that the θ (N) value depends on the experimental
conditions (optical and coupling losses, detection efficiency,
detector-tree splitting ratio). On the other hand, if the mea-
surement apparatus is previously characterized, one could
identify the number of single-photon emitters in the ensemble
and then optimization can be carried on to remove the noise
source. Another important advantage of θ (N) measurement is
that its value gets more nonclassical for increasing number of
emitters, while g(N) approaches classicality in this cases. The
technique is of high interest in quantum technology because,
in principle, the information gained by its implementation
can be used together with other multicoincidence techniques
[32–44], leading to an improvement of the latter applications.
Finally, for more complex cases (not only single emitters and
Poissonian noise but also thermal modes are present), θ (N)

and g(N) measurements can be possibly combined as in the
algorithm described in Ref. [28] to obtain a rigorous and
reliable reconstruction of the modal structure of the fields.

Our results pave the way both for studying quantum-
classical boundary and for quantifying resources needed in
quantum technologies.

Note added. Recently we became aware that another work
produced similar results albeit considered from a different
perspective [49].
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TABLE I. Table of the experimental deviations of g(2)(0) from
the classical limit.

1 − g(2)(0) Noise level 1 Noise level 2 Noise level 3

Item-1 0.61 ± 0.03 0.32 ± 0.04 0.12 ± 0.02
Item-2 0.168 ± 0.004 0.139 ± 0.006 0.088 ± 0.011
Item-3 0.34 ± 0.01 0.254 ± 0.017 0.135 ± 0.016
Item-1 (check) 0.63 ± 0.03
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APPENDIX A: SAMPLE PREPARATION

This work was performed on synthetic nanodiamond (ND)
powders produced by ElementSix by fragmentation of HPHT
synthetic diamond with a nominal size of distribution com-
prised between 10 and 250 nm. The powders were classified
as Ib type, with a nominal substitutional N concentration
of 10–100 ppm, and contained a low amount of native NV
centers as a consequence of the high crystalline quality of
the batch. NV centers were therefore fabricated through the
introduction of radiation-induced vacancies and a subsequent
thermal annealing [50]. The ND powders were first exposed to
an acid bath (H2SO4 :HNO3 = 9:1 solution; 72 h at 100 ◦C) to
remove organic contaminations and graphite, and subsequently
dispersed over a suitable substrate for ion irradiation. Then,
they were irradiated with a 2 MeV H+ beam at the AN2000
Accelerator of the INFN National Laboratories of Legnaro
(Italy). An irradiation fluence of 5 × 1012 protons/cm2 was
chosen, based on the ND median size and the NV centers
creation efficiency [51], as the optimal condition to fabricate
150-nm-sized NDs statistically containing one individual
NV center. Then, the powders were exposed to a thermal
treatment (800 ◦ C for 1 h, in an 800-mbar controlled N2

atmosphere) in order to promote the formation of NV centers.
After the annealing process, an additional cleaning step was

TABLE III. Table of the experimental deviations of g(2)(0) from
the classical limit as sampled by a single beam splitter of the detector
tree.

1 − g(2)(0) Noise level 1 Noise level 2 Noise level 3

Item-1 0.615 ± 0.009 0.345 ± 0.011 0.130 ± 0.008
Item-2 0.166 ± 0.003 0.141 ± 0.005 0.0966 ± 0.004
Item-3 0.34 ± 0.03 0.260 ± 0.007 0.144 ± 0.004

performed by a 30-min sonic bath in H2SO4, followed by a
cleaning in Piranha solution (H2SO4 :H2O2 = 3:1) to remove
organical residuals and to dissolve metal oxides and carbonates
contents from the ND powders. The samples were finally
dispersed on coverslip glass substrates for the subsequent
optical investigation.

APPENDIX B: EXPERIMENTAL VALUES

Tables I and II report the experimental deviations from the
classicality [1 − g(2)(0),1 − θ (2)(0)] experimentally measured
as plotted in Fig. 3.

Tables III and IV, instead, report the experimental devi-
ations from the classicality [1 − g(2)(0),1 − θ (2)(0)] as mea-
sured by a single beam splitter of the detector tree.

Finally, Table V shows the experimental count rates relative
to the characterized objects for each detection channel.

APPENDIX C: CALCULATION OF θ (N) AND g(N) IN
PRESENCE OF POISSONIAN NOISE

According to the notation introduced in Sec. II, it
follows that the probability P0⊗N = tr[ρ̂Q̂[⊗N](0)] (P0[i] =
tr[ρ̂Q̂

[Single]
[i] (0)] = P0) in Eq. (10), ρ̂ being the density matrix

describing the quantum state of the ensemble of emitters, can
be expressed in the form

∞∑
n=0

σnpn, (C1)

where pn = 〈n|ρ̂|n〉 is the probability distribution of the
photons and σn is equal to (1 − ξ )n [(1 − ξ

N
)n]. We study

the case of single emitters’ fluorescence in the presence of
Poissonian noise. The photon-number probability distribution
in this case is

pn =
M∑

m=0

∞∑
k=0

δn,m+kPsps(m)Pλ(k), (C2)

where, assuming that all the emitters in the ensemble are
coupled with the same efficiency (ηα = η,∀α), Psps(m) =

M!
m!(M−m)!η

n(1 − η)M−m is the distribution of the photons of

TABLE II. Table of the experimental deviations of θ (2)(0) from the classical limit.

1 − θ (2)(0) Noise level 1 Noise level 2 Noise level 3

Item-1 (4.3 ± 1.2) × 10−6 (4.3 ± 1.2) × 10−6 (4.1±1.2) × 10−6

Item-2 (11 ± 3) × 10−6 (11 ± 3) × 10−6 (9±2) × 10−6

Item-3 (8 ± 2) × 10−6 (8 ± 2) × 10−6 (8±2) × 10−6

Item-1 (check) (4 ± 1) × 10−6
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TABLE IV. Table of the experimental deviations of θ (2)(0) from
the classical limit as sampled by a single beam splitter of the detector
tree.

1 − θ (2)(0) Noise level 1 Noise level 2 Noise level 3

Item-1 (40 ± 3) × 10−7 (41 ± 2) × 10−7 (39 ± 3) × 10−7

Item-2 (100 ± 7) × 10−7 (103 ± 9) × 10−7 (92 ± 7) × 10−7

Item-3 (77 ± 1.2) × 10−7 (73 ± 3) × 10−7 (75 ± 5) × 10−7

the emitters, Pλ(k) = λke−λ

k! is the distibution of the Poissonian
light, and δx,y is the Kronecker delta. By substituting the
suitable value for σ in Eq. (C1), one gets

P0⊗N = (1 − ηξ )Me−λξ , (C3)

P0[i] = P0 =
(

1 − ηξ

N

)M

e−λξ/N . (C4)

Finally, substituting Eqs. (C3) and (C4) in Eq. (10), the
λ-dependent terms appear as equal factors both in the
numerator and in the denominator of the ratio and are
simplified, resulting in

θ (N)(0) = (1 − ηξ )M(
1 − ηξ

N

)MN
. (C5)

Thus, under our assumptions, the parameter θ (N) estimation
is independent from the Poissonian contribution at any order
N (at variance with g(N)).

This parameter must be compared with the g(N) function
that is expressed according to Eq. (9). In order to calculate it in
analogy with the expression of θ (N), we must first of all write
the probability of N -fold coincidence:

Pclick⊗N = tr[ρ̂Q̂[⊗N](N )] =
∞∑

n=0

Q[⊗N](N |n)pn

=
N∑

r=0

(−1)r
N !

r!(N − r)!

(
1 − ηrξ

N

)M

e−λrξ/N ,

leading to

g(N)(0) = Pclick⊗N

(Pclick)N

=
∑N

r=0(−1)r N!
r!(N−r)!

(
1 − ηrξ

N

)M
e−λrξ/N[

1 − (1 − ηξ

N
)Me−λξ/N

]N
,

where, in accordance with Eq. (C4) we used P (click) =
1 − P0. It is clear that, in opposition with the θ (N) case,

TABLE V. Table of the experimental count rates at the four
outputs of the detector tree (no noise added).

Rate (kHz) Ch 1 Ch 2 Ch 3 Ch 4

Item-1 22.4 ± 0.2 23.8 ± 0.7 16.90 ± 0.04 16.0 ± 0.3
Item-2 57.1 ± 1.2 70 ± 2 40.5 ± 0.8 44 ± 1
Item-3 37.3 ± 1.9 43 ± 3 27.8 ± 1.4 27.8 ± 1.7

the contribution of the Poissonian terms to g(N) cannot be
eliminated.

APPENDIX D: CALCULATION OF θ (N) FOR
UNBALANCED MULTIPORT HBT INTERFEROMETER

IN PRESENCE OF POISSONIAN NOISE

In the case of a nonideal (unbalanced) multiport HBT inter-
ferometer, the disproportion of the single-photon detections at
each output port of the interferometer can be due either to the
nonideal splitting ratio of the beam splitters of the detector
tree at the heart of the multiport HBT or to the different
value of quantum efficiency of each detector. To simplify
the calculation we consider the situation in which the beam
splitters are ideal (thus, for an N -port HBT interferometer, the
probability of finding a single photon in each port is 1/N )
and the whole unbalancement is summarized in the quantum
efficiency ξi of each detector. Starting from Eqs. (2)–(7),
and carrying on the calculation, in complete analogy with
Appendix C but without the assumption of identical detectors,
we will obtain that

P0⊗N =
(

1 − η

∑N
i=1 ξi

N

)M

e−λ(
∑N

i=1 ξi/N), (D1)

P0[i] = P0 =
(

1 − ηξi

N

)M

e−λξi/N . (D2)

Thus, also in the case of an unbalanced HBT interferometer,
θ (N)(0) is independent from the Poissonian noise. There is
essentially a trade-off between θ (N) and g(N) measurements.
While g(N) values are independent from inefficiencies and
losses, and obviously from HBT interfermeter unbalancement,
they are strongly affected by Poissonian noise. On the contrary,
θ (N) values strongly depend on inefficiencies and losses,
but they are completely unaffected by the Poissonian noise
irrespective of the level of unbalancement of the HBT
interferometer.

APPENDIX E: EXPLICIT θ (N) AND g(N) EXPRESSIONS

The following are the explicit expressions of θ (2), θ (3), and θ (4) as functions of the click and coincidence probabilities at the
detectors:

θ
(2)
[ij ] = 1 − Pclick[i] − Pclick[j ] + Pclick⊗2[ij ]

(1 − Pclick[i])(1 − Pclick[j ])
,

θ
(3)
[ijk] = 1 − Pclick[i] − Pclick[j ] − Pclick[k] + Pclick⊗2[ij ] + Pclick⊗2[ik] + Pclick⊗2[jk] − Pclick⊗3[ijk]

(1 − Pclick[i])(1 − Pclick[j ])(1 − Pclick[k])
,
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θ
(4)
[ijkl] = 1

(1 − Pclick[i])(1 − Pclick[j ])(1 − Pclick[k])(1 − Pclick[l])
(1 − Pclick[i] − Pclick[j ] − Pclick[k] − Pclick[l] +

· · · + Pclick⊗2[ij ] + Pclick⊗2[ik] + Pclick⊗2[il] + Pclick⊗2[jk] + Pclick⊗2[j l] + Pclick⊗2[kl] +
· · · − Pclick⊗3[ijk] − Pclick⊗3[ij l] − Pclick⊗3[ikl] − Pclick⊗3[jkl] + Pclick⊗4[ijkl]),

where, for instance, Pclick[i] is the click probability at the ith detector, Pclick⊗2[ij ] is the twofold coincidence probability between
channels i and j , and Pclick⊗3[ijk] (Pclick⊗4[ijkl]) is the three- (four-)fold coincidence probability among channels i,j,k (i,j,k,l). The
latter probabilities are experimentally sampled from single channel detection (Ni), the two-(Nij ), three-(Nijk), and fourfold (Nijkl)
coincidence rates, respectively, as Pclick[i] = Ni/NT R , Pclick⊗2[ij ] = Nij/NT R , Pclick⊗3[ijk] = Nijk/NT R , Pclick⊗4[ijkl] = Nijkl/NT R

and NT R is the rate of excitation events (the repetition rate of the excitation laser). Analogously, the g functions are estimated as

g
(2)
[ij ] = Pclick⊗2[ij ]

Pclick[i]Pclick[j ]
, (E1)

g
(3)
[ijk] = Pclick⊗3[ijk]

Pclick[i]Pclick[j ]Pclick[k]
, (E2)

g
(4)
[ijkl] = Pclick⊗4[ijkl]

Pclick[i]Pclick[j ]Pclick[k]Pclick[l]
. (E3)
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