76 research outputs found

    Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    Get PDF
    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair

    Bioengineering of articular cartilage: past, present and future

    Get PDF
    The treatment of cartilage defects poses a clinical challenge owing to the lack of intrinsic regenerative capacity of cartilage. The use of tissue engineering techniques to bioengineer articular cartilage is promising and may hold the key to the successful regeneration of cartilage tissue. Natural and synthetic biomaterials have been used to recreate the microarchitecture of articular cartilage through multilayered biomimetic scaffolds. Acellular scaffolds preserve the microarchitecture of articular cartilage through a process of decellularization of biological tissue. Although promising, this technique often results in poor biomechanical strength of the graft. However, biomechanical strength could be improved if biomaterials could be incorporated back into the decellularized tissue to overcome this limitation

    The proliferation and phenotypic expression of human osteoblasts on tantalum metal

    No full text
    Tantalum (Ta) is increasingly used in orthopaedics, although there is a paucity of information on the interaction of human osteoblasts with this material. We investigated the ability of Ta to support the growth and function of normal human osteoblast-like cells (NHBC). Cell responses to polished and textured Ta discs were compared with responses to other common orthopaedic metals, titanium and cobalt–chromium alloy, and tissue culture plastic. No consistent differences, that could be attributed to the different metal substrates or to the surface texture, were found in several measured parameters. Attachment of NHBC to each substrate was similar, as was cell morphology, as determined by confocal microscopy. Cell proliferation was slightly faster on plastic than on Ta at 3 days, but by 7 days neither the absolute cell numbers, nor the number of cell divisions, was different between Ta and the other substrates. No consistent, substrate-dependent differences were seen in the expression of a number of mRNA species corresponding to the pro-osteoclastic or the osteogenic activity of osteoblasts. No substrate-dependent differences were seen in the extent of in vitro mineralisation by NHBC. These results indicate that Ta is a good substrate for the attachment, growth and differentiated function of human osteoblasts.David M. Findlay, Katie Welldon, Gerald J. Atkins, Donald W Howie, Andrew C. W. Zannettino, Dennis Boby

    Effect of surface acoustic waves on the viability, proliferation and differentiation of primary osteoblast-like cells

    No full text
    Surface acoustic waves (SAWs) have been used as a rapid and efficient technique for driving microparticles into a three-dimensional scaffold matrix, raising the possibility that SAW may be effective in seeding live cells into scaffolds, that is, if the cells were able to survive the infusion process. Primary osteoblast-like cells were used to specifically address this issue: To investigate the effects of SAW on the cells’ viability, proliferation, and differentiation. Fluorescence-labeled osteoblast-like cells were seeded into polycaprolactone scaffolds using the SAW method with a static method as a control. The cell distribution in the scaffold was assessed through image analysis. The cells were far more uniformly driven into the scaffold with the SAW method compared to the control, and the seeding process with SAW was also significantly faster: Cells were delivered into the scaffold in seconds compared to the hour-long process of static seeding. Over 80% of the osteoblast-like cells were found to be viable after being treated with SAW at 20 MHz for 10–30 s with an applied power of 380 mW over a wide range of cell suspension volumes (10–100 μℓ) and cell densities (1000–8000 cells∕μℓ). After determining the optimal cell seeding parameters, we further found that the treated cells offered the same functionality as untreated cells. Taken together, these results show that the SAW method has significant potential as a practical scaffold cell seeding method for tissue and orthopedic engineering

    Diabetes, hyperinsulinemia, and hyperlipidemia in small aboriginal community in northern Australia

    No full text
    A small rural Aboriginal community in northern Australia was surveyed for diabetes, impaired glucose tolerance (IGT), hyperinsulinemia, and lipid levels. Of the 122 adults >17 yr of age who participated (95% response rate), 11.5% had diabetes, 7.4% had IGT, and the remaining 81.1% had normal glucose tolerance. Both diabetes and IGT were strongly age related. This high frequency of diabetes occurred, despite the population being relatively lean. Although the body mass index (BMI) increased with age in both men and women, only 25% of the population overall had BMI >25 kg/m2. There were wide ranges of insulin responses to glucose, with the upper fertile of 2-h insulin levels being more than seven times higher than the lower fertile (144 ± 13 vs. 19 ± 1 mLI/L). Hyperinsulinemia was associated with IGT, elevated triglycerides, and lower high-density lipoprotein cholesterol levels. Lipid abnormalities were much more frequent among men than women. Cholesterol levels were an average of 0.55 mM higher and triglycerides an average of 1.05 mM higher in men than in women, and both increased with age. In conclusion, this small isolated Aboriginal population from northern Australia had an unexpectedly high frequency of diabetes (in view of their relative leanness) in association with a high frequency of metabolic abnormalities indicative of insulin resistance (hyperinsulinemia, IGT, hypertriglyceridemia)

    Bioengineering of articular cartilage: Past, present and future

    Get PDF
    The treatment of cartilage defects poses a clinical challenge owing to the lack of intrinsic regenerative capacity of cartilage. The use of tissue engineering techniques to bioengineer articular cartilage is promising and may hold the key to the successful regeneration of cartilage tissue. Natural and synthetic biomaterials have been used to recreate the microarchitecture of articular cartilage through multilayered biomimetic scaffolds. Acellular scaffolds preserve the microarchitecture of articular cartilage through a process of decellularization of biological tissue. Although promising, this technique often results in poor biomechanical strength of the graft. However, biomechanical strength could be improved if biomaterials could be incorporated back into the decellularized tissue to overcome this limitation
    • …
    corecore