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Summary 

The treatment of cartilage defects poses a clinical challenge due to the lack of intrinsic regenerative 

capacity of cartilage. The use of tissue engineering techniques to bioengineer articular cartilage is 

promising and may hold the key to the successful regeneration of cartilage tissue. Natural and 

synthetic biomaterials have been used to recreate the microarchitecture of articular cartilage 

through multilayered biomimetic scaffolds. Acellular scaffolds preserve the microarchitecture of 

articular cartilage through a process of decellularisation of biological tissue. Although promising, this 

technique often results in poor biomechanical strength of the graft. Biomechanical strength could be 

improved however, if biomaterials could be incorporated back into the decellularised tissue to 

overcome this limitation. 

 

Word count: 4437 (excluding summary, tables, figures, references) 

Keywords: Bioengineering, Cartilage, Regeneration, Defects, Review, Tissue Scaffolds, Stem Cells 

Background 

Cartilage damage can result in pain and loss of function for many patients, and the 

management of moderate to severe defects has been difficult due to the lack of intrinsic capacity for 

cartilage to regenerate [1,2]. The fibrocartilage formed differs substantially from hyaline cartilage; 

therefore the goal is to form regenerative tissue with compressive and hydrodynamic qualities 

similar to hyaline cartilage. Many reports relate compromised function associated with repaired 

cartilage and loss of function of the articular surface [3]. 

Traditional methods of repair of osteochondral defects include debridement, marrow 

stimulation, osteochondral grafting and autologous chondrocyte implantation (ACI) [4-9]. 

Arthroscopic debridement and lavage provides symptomatic relief but does not change the natural 

course of the disease and has similar outcomes to placebo surgery [10,11]. Marrow stimulation, 

usually in the form of microfracture, relies on local recruitment of marrow based stem cells and 
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growth factors to the site of articular repair [12]. The resulting fibrocartilaginous repair does not 

resemble surrounding hyaline cartilage, consisting of less collagen type II [13]. A prospective study 

on microfracture showed good to excellent in 67% of patients following a mean postoperative 

follow-up period of 3.6 years [14]. However, results of microfracture deteriorate over time due to 

the formation of fibrocartilage in the repair tissue [15,16].  

Osteochondral grafting and ACI techniques however aim to regenerate hyaline cartilage. 

Recent 10 year follow-up study showed superior clinical results of osteochondral grafting compared 

with microfracture in young athletes with focal osteochondral defects [17]. An earlier clinical study 

of ACI showed an improvement in symptoms in 14 out of 16 patients at 2 years who had femoral 

condylar lesions [18]. Peterson et al showed good to excellent clinical results following ACI in a 2- to 

9-year followup period, in particular in patients with isolated femoral condyle lesions and 

osteochondritis dissecans of the knee [19]. At 10 to 20 years post ACI implantation, 74% of 224 

patients reported improvements in symptoms [20]. Similarly, Vijayan et al recently reported 12 out 

of 14 patients with good to excellent clinical outcomes at 2 to 8 year followup (average 5.2 years) 

post matrix-induced autologous chondrocyte implantation (MACI) [21]. However in a 5 year long 

term randomised controlled trial, ACI results have been comparable to microfracture, although 

subgroup analysis of that trial showed patients with onset of symptoms less than 3 years had better 

outcome with chondrocyte implantation than microfracture [22]. 

Disadvantages of osteochondral grafting include limitations on donor site availability and 

morbidity [23]. The space between cylindrical grafts may impair the quality of the repair as Lane et al. 

found poor integration of full thickness gaps in experiments in goats [24]. ACI is technically 

challenging with high reoperation rates of 9-20% and associated higher costs [14]. In one study, 36% 

of periosteal patches required debridement of the graft due to periosteal hypertrophy [25]. It also 

requires ex vivo expansion of chondrocytes which necessitates two operations typically at an interval 

of 2 weeks. 
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New products have since been introduced for clinical trials and clinical use. These products 

are based on traditional methods of repair, enhanced with tissue engineering techniques, and are 

summarised in table 1. Although a few have shown some promise, the majority lack long term 

studies and complications have been reported [26,27].  

Although techniques such as osteochondral grafting and ACI have shown improvements over 

microfracture in certain cases, further improvements can be made to increase the longevity and 

consistency of clinical results achieved through current standards of care. As a result substantial 

research continues to focus on advancements in tissue engineering of cartilage to overcome the 

limitation of current repair methods and to develop a bioengineered cartilage regeneration therapy. 

Biomimetic scaffolds using natural and synthetic biomaterials have attempted to reverse engineer 

the complex microarchitecture of hyaline cartilage. Recent developments in acellular biological 

scaffolds, which aim to preserve the native microarchitecture of cartilage to aid in regeneration of 

cartilage defects, may hold the key and the future of articular cartilage regeneration. 

 

Tissue Engineering 

Tissue engineering has the potential to overcome the limitations of current treatment 

options for osteochondral defects. Tissue engineering combines the use of cells, biomaterials and 

stimulatory factors to regenerate and reconstruct the osteochondral unit. 3D tissue grafts can be 

shaped, engineered and tailored to specific needs to improve structural, biological and 

biomechanical properties of current repair processes [28]. 

Cell Source 

Chondrocytes, fibroblasts, stem cells and genetically modified cells have been explored as 

sources for cartilage regeneration, the goal of which is to identify a source that can be reliably used 

to regenerate good quality articular cartilage [2]. 

Chondrocytes 
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Chondrocytes are responsible for the secretion and maintenance of extracellular matrix and 

appear to be the logical cell of choice. Mature chondrocytes secrete type 2 collagen and sulphated 

glycosaminoglycans (GAGs) as extracellular matrix to maintain and remodel the cartilage matrix [29]. 

However the use of chondrocytes is limited by two major concerns. Chondrocytes are limited in 

number comprising only 2-5% of cartilage tissue and thus require expansion prior to use [29-31]. 

Furthermore, the process of expansion and cell culture causes dedifferentiation of mature 

chondrocytes so synthesis of proteoglycans and collagen Type II is decreased and collagen 

expression converts to collagen Type I [32-34]. A variety of methods have been used to prevent or 

limit the degree of dedifferentiation such as three dimensional culture and scaffolds, bioreactors, 

reduced oxygen tension and addition of growth factors such as transforming growth factor β (TGF-β), 

FGF and insulin like growth factor (IGF) [35-40]. These methods have produced hyaline cartilage, 

with varied success, in in-vitro studies. 

Stem Cells 

To avoid the limitations of chondrocytes, mesenchymal stem cells (MSCs) have been used 

for chondrogenesis and osteogenesis [41]. MSCs are found in a variety of human tissue including 

bone marrow, periosteum, synovial membrane, skeletal muscle, dermis, blood and adipose tissue 

[40,42-44]. Bone marrow-derived stem cells (BMSCs) have been most extensively studied. However, 

BMSCs have been shown to express markers showing hypertrophic chondrogenesis (type X collagen 

and MMP-13) that mineralize when exposed to osteogenic stimuli [45-47]. Adipose-derived stem 

cells (ADSCs) are commonly used for the generation of chondrocytes due to their ease of harvest 

and the availability of larger numbers of stem cells [48]. Together with various growth factors such 

as TGF-β and scaffold or culture media, such as alginate or agarose gel, these cells have been shown 

to undergo chondrogenesis with enhanced production of collagen Type II and aggrecan [49-54]. 

However, MSCs tend to produce inferior matrix in terms of mechanical integrity compared with 

chondrocytes [55]. 
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Human embryonic stem cells (hESCs) represent an alternative cell source for chondrogenesis 

due to their vast differentiation capacity into various somatic cell lineages and proliferative 

capabilities. A recent study demonstrates the ability for hESCs to undergo efficient chondrogenic 

differentiation using a hyaluronic acid hydrogel method of delivery in a rat model. They also showed 

complete integration of the hESCs engineered cartilage with surrounding cartilage in two-thirds of 

animals without the development of tumours at 12 weeks [56]. Hwang et al showed that 

mesenchymal stem cells derived from hESCs, are capable of multilineage differentiation into fat, 

cartilage and bone in vitro, and achieving normal cartilage architecture in rat osteochondral defect 

repair [57]. 

Recently, induced pluripotent stem cells (iPSCs) have been used to different both osteogenic 

and chondrogenic cell types [58,59]. Like hESCs, iPSCs has the potential to provide great scope for 

cellular expansion and differentiation compared to mesenchymal stem cells, without the same 

ethical problems [60]. There is always a risk of tumourigenicity associated with the use of stem cells 

and in particular the use of viral vectors. Newer methods that generate iPSCs without viral vectors 

have been developed to reduce the risk of tumourigenicity [61-64]. Overall chondrogenic 

differentiation of iPSCs is still in its formative stages of development and further work is required to 

evaluate its full potential in the field of osteochondral regeneration. 

Scaffolds 

Scaffolds provide the environment into which cells can grow and produce cartilage tissue 

and extracellular matrix. As related above, chondrocytes require 3D culture to avoid 

dedifferentiation of their phenotype [65]. Furthermore, the process of dedifferentiation can be 

reversed when chondrocytes are relocated into a three-dimensional (3D) environment [66-68]. 

Scaffolds can be made from a diverse range of materials including natural or synthetic materials or a 

hybrid of both. They can also be designed in forms of hydrogels, sponges, or fibrous mesh. Hydrogels 

support the transportation of cells and bioactive agents and can suspend cells in a three dimensional 
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environment. They can also be injected to fill defects of any size and shape. However they have 

inferior mechanical properties compared with other forms of scaffolds [69]. Sponges are porous 

scaffolds that facilitate cell adhesion. Pore size variation affects cell adhesion, migration and 

deposition [70]. Meshes can also be made to variable porosities governed by fibre diameter and 

direction. They exhibit greater mechanical strength but irregular filling into the mesh itself may 

compromise the quality of the graft and affect tissue integration. 3D constructs of woven fibres and 

electrospinning have been used to mimic the native cartilage material and 3D environment [71,72]. 

Natural materials 

Natural materials used in cartilage engineering include collagen, hyaluronic acid (HA), 

chitosan, alginate, fibrin, silk, gelatin, bacterial cellulose, and cartilage derived matrix. Examples of 

these materials are summarised in table 2 along with their respective advantages and disadvantages. 

Collagen and hyaluronic acid are two of the most common materials used in cartilage engineering 

and clinically most relevant, with many products already in clinical use and trial which are based on 

tissue engineered collagen or hyaluronic acid materials. Thus, these materials will be discussed 

further. 

Collagen has the advantage of being biodegradable, biocompatible and ability to be 

crosslinked [73]. Therefore it is a versatile materials used in tissue engineering. Collagen can be 

formed into different types of scaffolds including sponges, membranes, films, gels and fibres using a 

variety of fabrication methods [74]. Each fabrication method produces a different set of mechanical 

and biochemical properties. Methods that induce pore formation such as freeze-drying process 

result in greater porosity which allows greater cellular and soluble factor infiltration into the 

materials whilst decreases the inherent biomechanical strength of the material [75]. Collagen 

hydrogels are easy to make and forms a gel that can absorb large amounts of fluid which aids in 

cellular infiltration. However in the gel form collagen fibres are not aligned and therefore do not aid 

in manipulation of the microarchitecture of the material to mimic the natural environment [76]. 
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However, in some cases the use of collagen has resulted in a foreign body reaction and poor 

integration with surrounding tissue [2,77]. 

Recently, a two year randomised clinical trial of NeoCart, a collagen type I based bioscaffold 

seeded with autologous chondrocytes cultured in a bioreactor, showed improved clinical outcomes 

compared with baseline and microfracture groups [78]. Adverse events related to the study were 

consistent with those associated with knee arthroscopy. Whilst the results are promising, larger 

studies over longer periods are required before definitive conclusions can be drawn on the efficacy, 

safety and benefit of novel therapies. 

Hyaluronan is an important component of the extracellular matrix of cartilage. Not only does 

it hold water to give compressive strength to cartilage, it also interacts with binding proteins, 

proteoglycans and growth factors which help maintain the ECM structure [79]. Hyaluronic acid (HA) 

is useful in the development of hydrogels due to its negative charge and water-trapping properties 

[80]. HA has been used extensively in tissue engineering not only for bone and cartilage but also in 

liver, cardiac, vascular, dermal, ophthalmic and neural tissue [81]. Mechanical, degradation rates and 

biological function can often be modified and controlled through modification of the HA molecule 

via chemical derivatisation and/or crosslinking with different molecules [82,83]. Toh et al found that 

lower cross-linking improved chondrogenesis of mesenchymal stem cells in a HA based hydrogel 

with increases in the percentage of cells with chondrocytic morphology and improved biosynthesis 

of collagen type II and glycosaminoglycans. Increasing hydrogel cross-linking improved matrix 

stiffness but promoted fibrocartilage formation [84]. HA also exists as fibrous scaffolds in the form of 

Hyaff. Hyaff scaffolds have been shown to allow growth of chondrocytes and support the 

chondrogenic and osteogenic differentiation of mesenchymal stem cells [85,86]. Hyalograft C 

autograft is composed of autologous chondrocytes grown in a 3D Hyaff scaffold, and was first 

introduced into the clinical setting in 1999 for the repair of full thickness cartilage defects [79]. 

Recent prospective clinical case series, with 2 and 7 year follow-up, showed clinical improvement in 
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young patients with single defects, however for patients with more advanced disease or with 

generalised osteoarthritis the results were poor [87]. 

Synthetic polymers 

Synthetic biodegradable polymers offer an alternative to natural materials for the purposes 

of tissue engineering. These materials offer certain advantages in recreating the complex and 

dynamic nature of native ECM. The key advantage include increased mechanical strength, 

degradation kinetics, versatility of fabrication methods with excellent control over shape, size and 

porosity, as well as the ability to add functional chemical groups to enhance the biological effect of 

the material [88]. Biodegradation has proven to be important in clinical use. Biodegradable polymers 

such as poly(glycolic acid), poly(lactic acid) and their copolymers have been in clinical use since the 

1960s such as in resorbable sutures [89].  Since then many other materials such as poly(dioxanone), 

poly(trimethylene carbonate) copolymers, and poly(ε-caprolactone) have been used in many 

medical devices [90,91]. The ideal polymer must consist of the appropriate mechanical properties to 

match the native ECM whilst allowing sufficient degradation time for tissue healing or regeneration 

to occur. However it must not cause inflammation or toxicity from the material itself or its 

degradation products and ideally be fully metabolized by the body after use [89]. A number of 

materials have been used for cartilage tissue engineering listed in Table 2. 

Poly(α-hydroxy esters) include poly(lactic acid) (PLA), poly(glycolic acid) (PGA), the 

copolymer poly(lactic-co-glycolic acid) (PLGA), and poly(ε-caprolactone) [92]. They are the most 

commonly used synthetic biodegradable polymers for cartilage tissue engineering [93]. PLA exists in 

three isomer forms: poly(L-lactic acid), poly(D-lactic acid), and poly(DL-lactic acid) depending on the 

position of the methyl group [92]. Amongst these poly(L-lactic acid) and poly(DL-lactic acid) are used 

more often as biomaterials. Poly(L-lactic acid) is a semicrystalline polymer exhibiting high tensile 

strength and low elongation making it suitable for load bearing applications such as sutures and 

orthopaedic fixation devices [94,95]. Poly(DL-lactic acid) is an amorphous polymer consisting of a 
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random distribution of each isomer and therefore has lower tensile strength and higher elongation 

and more rapid degradation, therefore making it more useful in a drug delivery system [89]. 

PGA is a highly crystalline polymer with high tensile strength used to develop the synthetic 

absorbable suture known as DEXON® in the 1970 [96]. However PGA also exhibits a high degradation 

rate and low solubility in most organic compounds due to its highly crystalline structure. This can 

result in the accumulation of degradation products which can cause inflammatory reactions [97,98]. 

One major issue with the use of synthetic materials is the acidic degradation by-product of 

the polyester materials. This has been implication in the stimulation of inflammatory reactions as 

well as deactivation of proteins in the surrounding tissue [99]. Therefore, this has led to the 

development of copolymers of the lactides/glycolides with other monomers to form poly(ether 

esters), poly(ester carbonates), poly(ester amides) and poly(ester urethanes) [100-105]. 

Shi et al (2012) used a 3D fibrous poly(L-lactic-co-glycolic acid) (PLLGA) scaffold to repair 

femoral trochlear lesions in rabbit knees. They showed when combined with microfracture the 

repair of full thickness defects was more rapid and efficient when compared to either microfracture 

or scaffold alone. There was positive staining of collagen type II and toluidine blue with good 

integration of repair tissue at 24 weeks [106]. Tru-Fit Plug (Smith & Nephew, Andover, MA, USA) is a 

synthetic resorbable biphasic implant from polyactide-coglycolide copolymer, calcium sulphate and 

polyglycolide. In early results, it  has shown formation of fibrocartilage with inferior biomechanical 

stability when subject to high shear forces in the knee, ongoing articular surface irregularity resulting 

in subsequent arthritic change and delayed integration [107-109]. 

Techniques to accelerate chondrogenesis 

Stimulating factors modulate cell behaviour and this may be by direct biochemical 

interaction or induced by mechanical stimulation. Growth factors commonly used to induce 

chondrogenesis of various cell types. Articular cartilage is subjected to mechanical pressure under 

physiological conditions. Mechanical stimulation such as hydrostatic pressure and dynamic 
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compression techniques have been used to mimic intra-articular conditions and do improve 

chondrogenesis in vitro [110,111]. Furthermore, the addition of growth factors with mechanical 

stimulation seems to produce synergistic effects [112]. 

Growth factors 

Multiple growth factors play an important role in the chondrogenesis of stem cells. The 

transforming growth factor-beta (TGF-β) superfamily contains many which promote chondrogenesis, 

including TGF- β1, TGF- β3, BMP-2, BMP-4, BMP-7, and GDF-5 have been shown to promote 

cartilaginous ECM production [113]. Whilst they all promote cartilaginous ECM production, TGF- β1 

and BMP-2 also down-regulate collagen type I production [114]. Insulin-like growth factor 1 (IGF-1) is 

the main anabolic growth factor in cartilage and controls proteoglycan synthesis and breakdown, 

and induces expression of chondrocyte phenotype [115]. Its effect is independent to the TGF-β 

signalling pathway and therefore when combined leads to additive effects on cartilage matrix 

synthesis [116,117]. Fibroblast growth factor (FGF)-2 and FGF-18 promotes the proliferation of 

chondrocytes and helps to prevent cartilage against damage [118,119]. 

Oxygen tension 

Articular cartilage is avascular with oxygen and nutrients being delivered via passive 

diffusion from synovial fluid [68]. Therefore, articular cartilage exists naturally in a low oxygen 

environment. Hypoxia inducible factor (HIF) mediates transcription factors to allow chondrocytes to 

adapt to low oxygen tension [120]. Hypoxia has been shown to increase the synthesis of ECM 

proteins in vitro in both chondrocytes as well as hypoxia-induced chondrogenic differentiation of 

MSCs [67,121,122]. Hypoxia has also been shown to inhibit the expression of collagen Type X, 

present in fibrocartilage and a marker of chondrocyte hypertrophy [123,124]. Therefore it seems 

hypoxia is an important environmental factor to be considered for cartilage regeneration. 

Bioreactor 
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Bioreactors are used to improve nutrient transport and provide a fluid-induced shear stress 

to tissues to promote chondrogenesis. Current bioreactors used for cartilage tissue engineering 

include parallel-plate bioreactors, rotating wall bioreactors, and concentric cylinder bioreactors 

[38,125,126]. Lu et al (2012) showed increased deposition of collagen II and glycosaminoglycans 

leading to the formation of cartilage like tissue in a rotating-shaft bioreactor using TGF-β3 expressing 

adipose stem cells[127]. 

Electrical stimulation 

Electrical stimulation has also been employed to induce cartilage and bone repair. In 1974, 

Baker et al. attempted to enhance cartilage repair stimulation of articular cartilage repair by 

electrical means using bimetallic devices inserted into full-thickness articular cartilage defects [128]. 

They demonstrated enhancement of latent potential for repair with hyaline cartilage. The repair 

response appeared to derive from proliferating chondrocytes at the defect margin, with 

encroachment over the surface of the central defect. More recently Brighton et al. reported that 

capacitatively coupled electrical signal resulted in significant up-regulation of cartilage matrix 

protein expression and production while simultaneously significantly attenuating the up-regulation 

of metalloproteinase expression [129]. These results support the contention that delivery of a 

specific, defined electrical field to articular cartilage could result in matrix preservation. They 

concluded that the use of electrical stimulation to both increase matrix production and diminish 

matrix destruction has the promising potential to treat osteoarthritic patients in a non-invasive 

manner. 

Recreating the microarchitecture of articular cartilage 

The biomechanical function of articular cartilage results from the structure of the 

extracellular matrix. The dense network of collagen and proteoglycans in the ECM not only support 

chondrocyte attachment but also transmits mechanical force within the ECM to allow cells to 

respond to mechanical stress [130]. The collagen network provides tensile strength and the 
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proteoglycans, due to their negative charge, maintains high levels of approximately 70% water 

content to resist compressive forces [131]. The intrinsic structure of articular cartilage is further 

organized into three distinct zones: superficial or tangential, middle or transition, deep or radial zone. 

This sits above a layer of calcified cartilage. Each zone has distinct ECM composition, organisation 

and cellular phenotype. Towards the superficial layer the chondrocytes are smaller, thinner, and 

orientated parallel to the articulating surface along with the orientation of the collagen network to 

provide resistance to shear forces [132]. Here chondrocytes also secrete lubricin, otherwise known 

as superficial zone protein, which acts to reduce friction resistance of the cartilage [29,133]. The 

middle zone consists of larger rounded chondrocytes with random collagen orientation with high 

levels of proteoglycans [134]. The deep zone consists of oval chondrocytes with collagen fibres 

forming a vertical or perpendicular alignment. Deep zone cells produce more collagen and 

proteoglycans than the superficial layer however has a lower cell density [131]. 

Biomimetic scaffolds 

Most attempts to date at bioengineering cartilage have focused on using natural and 

synthetic biomaterials, as mentioned previously, to mimic the natural microarchitecture and 

biomechanical properties of native cartilage. Recent examples of such an approach include Kon et al, 

where a multilayered gradient nano-composite scaffold using collagen type I fibrils with 

hydroxyapatite nanoparticles were used in a pilot trial of thirty patients with chondral and 

osteochondral knee lesions [135]. Others have used fibre-hydrogel composite materials to mimic the 

native extracellular structure [136]. More examples are listed in the references of table 2 and many 

have been discussed throughout the course of this review. The advantages and disadvantages of 

each scaffold relate to the materials used. However in general composite materials attempt to 

harness the strengths of each material used. 

Acellular biological scaffolds 
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Acellular scaffolds consist of noncellular parts of a tissue such that collagen and 

carbohydrate structures are maintained in their natural state. Therefore they should maintain the 

appropriate environment for cellular re-attachment, migration, differentiation and proliferation to 

enhance tissue regeneration when transplanted, whilst maintaining, in theory, a perfect 

microarchitecture for the repair tissue (Figure 1) [137]. In recent years decellularised biological 

matrices has been used to regeneration various tissue types including skin, cartilage, bladder, spinal 

cord, and myocardium[138-142].  

A number of studies to date have described the use of acellular cartilage matrices in the 

repair of chondral and osteochondral defects [143,144]. Cheng et al showed acellular porcine 

cartilage-derived matrix was able to support the growth of neocartilage formation in the absence of 

exogenous growth factors [143]. Recently the same group was able to induce chondrogenic 

differentiation of human adipose-derived stem cells without exogenous growth factors on an 

acelluar cartilage matrix crosslinked with genipin to prevent scaffold contraction [145].Schwarz et al 

have shown the successful decellularisation and sterilization of porcine knee and nasal cartilage and 

human nasal cartilage. They also show the ability to remove proteoglycan content whilst maintaining 

the collagen structure. However the decellularisation process also increased the amount of 

denatured collagen compared with native cartilage. Overall there was significant decrease of 

biomechanical loading stress, which the acellular matrix showing reduced stiffness by about 69.5% 

[146]. The matrix did however support the growth of chondrocytes and re-acculumation of 

proteoglycans in the process of in vitro culture [147]. Kang et al also reported the use of 

decellularized cartilage ECM scaffold loaded with adipose stem cells [148]. They used a rabbit 

osteochondral defect model to show adipose stem cell loaded ECM scaffold induced cartilage repair 

tissue comparable to native cartilage in both mechanical and biochemical properties at 6 months. 

Other types of cell-derived matrix (CDM) including fibroblast-derived matrix, preosteoblast-

derived matrix and chondrocyte-derived matrix have been explored and found to support and 
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enhance the growth of chondrocytes and provide a chondro-inductive microenvironment for re-

differentiation of dedifferentiated chondrocytes [149]. 

The primary concern with decellularised extracellular matrix is the loss of biomechanical 

strength and stability during the process of decellularisation. All studies so far have demonstrated a 

loss of mechanical strength as a result of reducing or removing certain components of the 

extracellular matrix in order to achieve decellularisation. 

Lee et al was able to regenerate an entire joint surface of the rabbit proximal humeral joint 

using an acellular bioscaffold created from composite poly-ε-caprolactone and hydroxyapatite 

infused with TGF-β3. They found TGF-β3 infused scaffolds yielded uniform chondrocyte distribution 

across the surface of the bioscaffold and form hyaline-like cartilage expressing collagen type II and 

aggrecan. Furthermore complex microarchitecture of cartilage was recreated as exemplified by the 

formation of stratified avascular cartilage and vascularised bone [150]. This study indicates that 

using acellular scaffolds to provide a suitable environment for endogenous cell recruitment and 

differentiation may be a viable alternative. 

Conclusion and future perspectives 

Injuries to articular cartilage are common, affect people of all ages and cause significant 

morbidity. Cartilage tissue has limited capacity for self-repair and regeneration of fibrous cartilage 

post injury results in numerous attempts at repair. Current approaches may provide adequate long-

term solutions for certain patient groups; however results can often be inconsistent and comparable 

to basic techniques such as microfracture. The implementation of tissue engineering techniques to 

improve traditional methods has culminated in many products being taken to clinical trials for use in 

clinical practice. Early results for some products show some promise; however, results have been 

inconsistent and poor histological repair and complications have been reported.  

Regeneration-based tissue engineering approaches should provide better management of 

articular cartilage defects. However, our complete understanding of the nature of articular cartilage 
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and the processes which govern tissue regeneration are still not completely understood. The optimal 

combination of cells, biomaterials and stimulatory factors to mimic the natural articular 

environment are yet to be defined.  

In our opinion tissue engineering strategies could be improved in the areas of source of cells 

as well as the nature of biomaterials. Recently, the use of iPSCs in the regeneration of bone and 

cartilage tissue in vitro and in vivo has demonstrated a potential role in regenerative orthopaedic 

medicine [58,59]. iPSCs may prove to have a greater capacity for expansion and differentiation. 

However, this technology is in its formative stages and requires development to the stage where 

iPSCs may be used safely in clinical settings. 

We believe that the key to successful regeneration of osteochondral tissue lies with 

recreating not only the composition of the extracellular matrix such as collagen type II and 

proteoglycans, but more importantly creating the complex nano-structure and microarchitecture of 

cartilage tissue itself. Acellular tissue matrix such as acelluar cartilage matrix may provide the best 

possible chance of recapitulating the native microarchitecture of hyaline cartilage in a transplantable 

form for tissue regeneration. However the process of decellularisation may cause destruction of 

microarchitecture resulting in weaker biomechanical strength than expected. This limitation may be 

overcome by augmenting decellularised cartilage with, for example, additional collagen content via 

nanofabrication techniques to improve biomechanical strength and stability. Such hybrid scaffolds 

may benefit from retaining a natural microarchitecture environment whilst improving biomechanical 

strength lost during the decellularisation process. 
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Executive summary 

Background 

• Cartilage damage is a significant clinical problem and management is difficult due to lack of 

intrinsic regenerative capacity of cartilage tissue. 

• New products aim to improve existing technique through the use of tissue engineering 

strategies. 

Tissue Engineering 

• Tissue engineering combines cells, biomaterials and stimulatory factors to regenerate tissue. 

• Cell sources for cartilage tissue engineering include chondrocytes, mesenchymal stem cells, 

embryonic stem cells and induced pluripotent stem cells. 

• Many scaffold materials have been used to support chondrogenesis, and these materials 

often include the use of natural and/or synthetic materials. 

• The advantages of natural scaffold materials include increased biodegradability, 

biocompatibility, however biomechanical strength can be weaker compared with synthetic 

materials. 

• Synthetic materials such as poly(lactic acid), poly(glycolic acid), poly(caprolactone) and their 

various copolymers provide an alternative to natural scaffold materials, often providing 

greater biomechanical strength. However biodegradation and biocompatibility can be an 

issue which limits their use. 

• Often hybrid natural and synthetic scaffolds are used to complement the strengths and 

weaknesses of each material. 
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• Stimulatory factors for chondrogenesis include growth factors such as TGF-β, FGF, BMP and 

IGF, mechanical stimulation, hypoxic environments, bioreactors, and electrical stimulation. 

Recreating the microarchitecture of articular cartilage 

• Recreating the microarchitecture of articular cartilage is crucial to achieving normal 

biomechanical function of engineered cartilage. 

• Natural and synthetic materials have been manufactured to mimic the microarchitecture of 

articular cartilage. 

• Acellular cartilage matrix is a viable alternative to preserving the microarchitecture 

environment, thereby creating a scaffold with enhance regenerative capacity  

• The major drawback with acellular cartilage matrix is the loss of biomechanical strength that 

exists with the decellularisation process. 

Conclusion and future perspectives 

• Supplementing decellularized tissue with natural and/or synthetic materials through the use 

of nanofabrication methods could improve the biomechanical properties of decellularized 

tissue while maintaining its natural architecture and biocompatibility properties. 
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Figure Legends 

Figure 1: Acellular cartilage matrix retains the natural microarchitecture thereby maintain the 

appropriate environment for cellular re-attachment, migration, differentiation and proliferation to 

enhance tissue regeneration when transplanted. 
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Tables 

Table 1: Products which enhance traditional methods of repair using tissue engineering approaches 

Traditional method Enhancements Product name Material Company 

Marrow Stimulation 

(e.g. microfracture) 

Scaffold-guided 

microfracture 

BST-CarGel® [151] Chitosan-glycerol phosphate based hydrogel Piramal Healthcare, Laval, Quebec, 

Canada 

ChonDux™ [152] Photopolymerized hydrogel combined with a 

biological adhesive 

Biomet, Inc., Warsaw, IN, USA 

Gelrin C [153] Polyethylene glycol diacrylate (PEG-DA) and 

denatured fibrinogen hydrogel 

Regentis Biomaterials, Regentis, Haifa, 

Israel 

Osteochondral graft 

(e.g. mosaicplasty) 

Replacement of 

osteochondral plug 

with natural and 

synthetic 

biomaterial graft 

Salucartilage 

[26,27] 

Biodegradable hydrogel implant Salumedica, Smyna, GA, USA 

Chondromimetic 

[154] 

Multilayer triple co-precipitate of collagen, 

glycosaminoglycans and calcium phosphate 

TiGenix, Leuven, Belgium 

Tru-Fit Plug [107-

109] 

Synthetic resorbable biphasic implant from 

polylactide-coglycolide copolymer, calcium 

Smith & Nephew, Andover, MA, USA 
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sulphate and polyglycolide 

Autologous 

chondrocyte 

implantation (ACI) / 

Matrix-assisted 

chondrocyte 

implantation (MACI) 

Changes to 

biomaterials used in 

scaffold 

Carticel [155] Porcine-derived type I and type II collagen 

scaffolds 

Genzyme Inc, Cambridge, MA, USA 

Chondrogide [156] Porcine-derived type I and type II collagen 

scaffolds 

Geistlich Biomaterials, Wolhausen, 

Switzerland 

Hyalograft-C [87] Hyaluronic acid based scaffold Fidia Advanced Biopolymers, Abano 

Terma, Italy), and Neocart 

(Histogenics, Waltham, MA 

Use of bioreactor to 

enhance in vitro 

culture 

Neocart [78] type I collagen matrix Histogenics, Waltham, MA 

Morselized cartilage Cartilage Autograft 

Implantation 

System (CAIS) [157] 

Morselized cartilage DePuy/Mitek, Raynham, MA 

DeNovo Natural Morselized cartilage Zimmer, Inc., Warsaw, IN, USA 
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Tissue (NT)  [158] 

 

Table 2: 

Table 2: Scaffold materials used for tissue engineering of articular cartilage 

Material Advantages Disadvantages Example References 

Natural Materials 

Collagen Biocompatible 

 

Contains ligands that aid 

in cell adhesion, 

migration and 

differentiation [159] 

Some cases of poor 

integration [77] 

[160]; [161]; [162]; [163]; [39]; 

[164]; [165]; [166]; [167]; [168]; 

[169] 

Fibrin Biodegradable 

 

Fibrin glue can be used 

to enhance integration 

of engineered tissue 

with native cartilage and 

bone 

Weak mechanical strength 

[170] 

 

Rapid degradation [170] 

[171]; [172]; [173]; [174] 
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Alginate Aids re-differentiation of 

de-differentiated 

chondrocytes [66] 

 

In vivo injectable options 

[175] 

 

Abundant and low cost 

Concerns of 

biocompatibility [176] 

[177]; [176] 

Hyaluronan Hyaluronan hydrogels 

can supplement matrices 

with cells and other 

biomimetics [81] 

Products of biodegradation 

can induce chondrolysis 

[178] 

Hyalograft C [79]; [179]; [180]; [181] 

Chitosan Structurally shares some 

characteristics 

with various GAGs and 

hyaluronic acid[182] 

 

Degradation products 

non-toxic and are 

involved in the synthesis 

of articular cartilage 

- Chondroitin sulphate, 

Limited solubility [183] 

 

Certain cross-linkage can 

result in poor 

biocompatibility 

[184]; [185]; [186]; [187]; [188]; 

[189]; [182]; [190] 
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Dermatan sulphate, 

Hyaluronic acid, Keratin 

sulphate, Glycosylated 

type II collagen 

Bacterial Cellulose Biocompatibility 

 

Match of mechanical 

properties with hard and 

soft tissue 

 

Implantable in gel form 

Lack of direct bond between 

cellulose and bone 

[191] 

Cartilage Derived Matrix Biocompatibility 

 

Support neocartilage 

formation in absence of 

exogenous growth 

factors 

 

Contains entrapped 

bioactive molecules that 

interact with cells 

Lower mechanical strength 

and higher rates of 

degradation compared with 

synthesized scaffolds 

 

Chemical cross-linking to 

improve strength can cause 

issues with biocompatibility 

[143]; [144]; [192] 

Gelatin Supports growth of Poor integration with bony [193] 
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chondrocyte layer in 

multilayered scaffold 

 

Uniform porosity allows 

better cell growth and 

proliferation 

structures 

Silk Supports growth of 

chondrocytes 

 

Good tensile strength 

Issues with biocompatibility 

and allergic reactions with 

certain types of silk 

[194]; [195] 

Synthetic Materials 

Poly(α-hydroxy esters) 

• Poly(lactic acid) 

• Poly(glycolic acid) 

• Poly(lactic-co-glycolic) 

• Poly(caprolactone) 

Satisfactory 

biocompability [97] 

 

Good mechanical 

properties 

 

Flexibility in degradation 

rates 

Degradation by-products 

has been shown to elicit 

inflammatory response and 

decreased pH level [98] 

 

Mechanical stiffness can 

sometimes be undesirable  

[196] 

 

Hydrophobicity [196] 

 

[197];[198]; [199]; [197]; [200]; 

[201]; [202]; [203]; [204]; [205];; 

[92]; [206]; [207]; [208]; [209]; 

[210]; [211]; [212]; [209]; [213] 

Poly(ethylene glycol) Hydrophilicity 

 

Biocompatibility 

[214]; [215] 



38 

 

Poly(hydroxyalkanoate) Good biodegradability 

 

Minimal inflammatory 

reaction in vivo 

 

Pizoelectric properties 

Cellular Dedifferentiation [216] 

Poly(vinyl alcohol) Biocompatible 

 

PVA hydrogels have 

similar properties to 

native cartilage 

Poor integration with 

surrounding cartilage 

[162,217] 

Poly (urethane urea) Excellent mechanical and 

biochemical properties 

Polyurethanes using 

polyester diols are 

hydrolytically unstable 

[218]; [219] 
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