260 research outputs found

    Pharmacologic P2X purinergic receptor antagonism in the treatment of collagen-induced arthritis

    Get PDF
    OBJECTIVE.: The aim of the present study was to assess the therapeutic potential of a P2X purinergic receptor antagonist, namely periodate oxidized ATP (oATP), in collagen-induced arthritis (CIA). METHODS.: Arthritis was induced in male DBA/1J mice by immunization with type II collagen. Animals showing digits inflammation and paw swelling were treated intraperitoneally each day for 10 days with 100 \u3bcl of 3 mM oATP. At the end of treatment animals were sacrificed and paws removed for histological analysis and evaluation of T-cell infiltration. Humoral response to type II collagen was analyzed and specific serum autoantibody levels were correlated to the clinical score observed in the different animal groups. RESULTS: oATP treatment resulted in a sustained reduction of disease activity, which was associated with a significant decrease in CD3+ T-cells infiltration in arthritic lesions and a significant amelioration of cartilage erosion. Peripheral regulatory T cells (Tregs) were significantly increased upon P2X blockade in lymph nodes. Moreover, a marked reduction of circulating autoantibodies directed against mouse collagen type II wasdetected. CONCLUSIONS.: Our findings indicate that P2X receptor antagonism has an important therapeutic potential for chronic inflammatory rheumatic disorders. The therapeutic efficacy was associated with an increase of Tregs in secondary lymphoid organs. Notably, we observed a significant correlation between serum autoantibodies and clinical efficacy exerted by oATP treatment. Together these results underscore the potential value of the P2X receptor signaling pathway as a potential pharmacological target for the modulation of adaptive immunity in CIA

    Early Pain Exposure Influences Functional Brain Connectivity in Very Preterm Neonates

    Get PDF
    Background: Early exposure to nociceptive events may cause brain structural alterations in preterm neonates, with long-lasting consequences on neurodevelopmental outcome. Little is known on the extent to which early pain may affect brain connectivity. We aim to evaluate brain functional connectivity changes in preterm neonate that underwent multiple invasive procedures during the postnatal period, and to correlate them with the neurodevelopmental outcome at 24 months. Methods: In this prospective case-control study, we collected information about exposure to painful events during the early postnatal period and resting-state BOLD-fMRI data at term equivalent age from two groups of preterm neonate: 33 subjected to painful procedures during the neonatal intensive care (mean gestational age 27.9 \ub1 1.8 weeks) and 13 who did not require invasive procedures (average gestational age 31.2 \ub1 2.1 weeks). A data-driven principal-component-based multivariate pattern analysis (MVPA) was used to investigate the effect of early pain exposure on brain functional connectivity, and the relationship between connectivity changes and neurodevelopmental outcome at 24 months, assessed with Griffiths, Developmental Scale-Revised: 0\u20132. Results: Early pain was associated with decreased functional connectivity between thalami and bilateral somatosensory cortex, and between the right insular cortex and ipsilateral amygdala and hippocampal regions, with a more evident effect in preterm neonate undergoing more invasive procedures. Functional connectivity of the right thalamocortical pathway was related to neuromotor outcome at 24 months (P = 0.003). Conclusion: Early exposure to pain is associated with abnormal functional connectivity of developing networks involved in the modulation of noxious stimuli in preterm neonate, contributing to the neurodevelopmental consequence of preterm birth

    Lentiviral Vector Delivery of Human Interleukin-7 (hIL-7) to Human Immune System (HIS) Mice Expands T Lymphocyte Populations

    Get PDF
    Genetically modified mice carrying engrafted human tissues provide useful models to study human cell biology in physiologically relevant contexts. However, there remain several obstacles limiting the compatibility of human cells within their mouse hosts. Among these is inadequate cross-reactvitiy between certain mouse cytokines and human cellular receptors, depriving the graft of important survival and growth signals. To circumvent this problem, we utilized a lentivirus-based delivery system to express physiologically relevant levels of human interleukin-7 (hIL-7) in Rag2-/-γc-/- mice following a single intravenous injection. hIL-7 promoted homeostatic proliferation of both adoptively transferred and endogenously generated T-cells in Rag2-/-γc-/- Human Immune System (HIS) mice. Interestingly, we found that hIL-7 increased T lymphocyte numbers in the spleens of HIV infected HIS mice without affecting viral load. Taken together, our study unveils a versatile approach to deliver human cytokines to HIS mice, to both improve engraftment and determine the impact of cytokines on human diseases

    Human CD34+ CD133+ Hematopoietic Stem Cells Cultured with Growth Factors Including Angptl5 Efficiently Engraft Adult NOD-SCID Il2rγ−/− (NSG) Mice

    Get PDF
    Increasing demand for human hematopoietic stem cells (HSCs) in clinical and research applications necessitates expansion of HSCs in vitro. Before these cells can be used they must be carefully evaluated to assess their stem cell activity. Here, we expanded cord blood CD34+ CD133+ cells in a defined medium containing angiopoietin like 5 and insulin-like growth factor binding protein 2 and evaluated the cells for stem cell activity in NOD-SCID Il2rg−/− (NSG) mice by multi-lineage engraftment, long term reconstitution, limiting dilution and serial reconstitution. The phenotype of expanded cells was characterized by flow cytometry during the course of expansion and following engraftment in mice. We show that the SCID repopulating activity resides in the CD34+ CD133+ fraction of expanded cells and that CD34+ CD133+ cell number correlates with SCID repopulating activity before and after culture. The expanded cells mediate long-term hematopoiesis and serial reconstitution in NSG mice. Furthermore, they efficiently reconstitute not only neonate but also adult NSG recipients, generating human blood cell populations similar to those reported in mice reconstituted with uncultured human HSCs. These findings suggest an expansion of long term HSCs in our culture and show that expression of CD34 and CD133 serves as a marker for HSC activity in human cord blood cell cultures. The ability to expand human HSCs in vitro should facilitate clinical use of HSCs and large-scale construction of humanized mice from the same donor for research applications.Singapore-MIT Alliance for Research and Technology ( Infectious Diseases research grant

    Selective Preservation of Bone Marrow Mature Recirculating but Not Marginal Zone B Cells in Murine Models of Chronic Inflammation

    Get PDF
    Inflammation promotes granulopoiesis over B lymphopoiesis in the bone marrow (BM). We studied B cell homeostasis in two murine models of T cell mediated chronic inflammation, namely calreticulin-deficient fetal liver chimeras (FLC), which develop severe blepharitis and alopecia due to T cell hyper responsiveness, and inflammatory bowel disease (IBD) caused by injection of CD4+ naïve T cells into lymphopenic mice. We show herein that despite the severe depletion of B cell progenitors during chronic, peripheral T cell-mediated inflammation, the population of BM mature recirculating B cells is unaffected. These B cells are poised to differentiate to plasma cells in response to blood borne pathogens, in an analogous fashion to non-recirculating marginal zone (MZ) B cells in the spleen. MZ B cells nevertheless differentiate more efficiently to plasma cells upon polyclonal stimulation by Toll-like receptor (TLR) ligands, and are depleted during chronic T cell mediated inflammation in vivo. The preservation of mature B cells in the BM is associated with increased concentration of macrophage migration inhibitory factor (MIF) in serum and BM plasma. MIF produced by perivascular dendritic cells (DC) in the BM provides a crucial survival signal for recirculating B cells, and mice treated with a MIF inhibitor during inflammation showed significantly reduced mature B cells in the BM. These data indicate that MIF secretion by perivascular DC may promote the survival of the recirculating B cell pool to ensure responsiveness to blood borne microbes despite loss of the MZ B cell pool that accompanies depressed lymphopoiesis during inflammation

    Antibodies in HIV-1 Vaccine Development and Therapy

    Get PDF
    Despite 30 years of study, there is no HIV-1 vaccine and, until recently, there was little hope for a protective immunization. Renewed optimism in this area of research comes in part from the results of a recent vaccine trial and the use of single-cell antibody-cloning techniques that uncovered naturally arising, broad and potent HIV-1–neutralizing antibodies (bNAbs). These antibodies can protect against infection and suppress established HIV-1 infection in animal models. The finding that these antibodies develop in a fraction of infected individuals supports the idea that new approaches to vaccination might be developed by adapting the natural immune strategies or by structure-based immunogen design. Moreover, the success of passive immunotherapy in small-animal models suggests that bNAbs may become a valuable addition to the armamentarium of drugs that work against HIV-1

    Defective Expression and Function of the Leukocyte Associated Ig-like Receptor 1 in B Lymphocytes from Systemic Lupus Erythematosus Patients

    Get PDF
    Systemic lupus erythematosus (SLE) is characterized by the production of a wide array of autoantibodies and dysregulation of B cell function. The leukocyte associated Immunoglobulin (Ig)-like receptor (LAIR)1 is a transmembrane molecule belonging to Ig superfamily which binds to different types of collagen. Herein, we have determined the expression and function of LAIR1 on B lymphocyte from SLE patients. LAIR1 expression in peripheral blood B lymphocytes from 54 SLE, 24 mixed connective tissue disease (MCTD), 20 systemic sclerosis (SSc) patients, 14 rheumatoid arthritis (RA) and 40 sex and age matched healthy donors (HD) have been analyzed by immunofluorescence. The effect of LAIR1 ligation by specific monoclonal antibodies, collagen or collagen producing mesenchymal stromal cells from reactive lymph nodes or bone marrow on Ig production by pokeweed mitogen and B cell receptor (BCR)-mediated NF-kB activation was assessed by ELISA and TransAM assay. The percentage of CD20+ B lymphocytes lacking or showing reduced expression of LAIR1 was markedly increased in SLE and MCTD but not in SSc or RA patients compared to HD. The downregulation of LAIR1 expression was not dependent on corticosteroid therapy. Interestingly, LAIR1 engagement by collagen or collagen-producing mesenchymal stromal cells in SLE patients with low LAIR1 expression on B cells delivered a lower inhibiting signal on Ig production. In addition, NF-kB p65 subunit activation upon BCR and LAIR1 co-engagement was less inhibited in SLE patients than in HD. Our findings indicate defective LAIR1 expression and function in SLE B lymphocytes, possible contributing to an altered control of B lymphocytes behavior

    The Immune Inhibitory Receptor LAIR-1 Is Highly Expressed by Plasmacytoid Dendritic Cells and Acts Complementary with NKp44 to Control IFNα Production

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are a subset of dendritic cells endowed with the capacity of producing large amounts of IFNα. Here we show that the Leukocyte-Associated Ig-like Receptor-1 (LAIR-1) is abundantly expressed on pDCs (the highest expression among all leukocytes) and its cross-linking inhibits IFNα production in response to Toll-like receptor ligands. Remarkably, LAIR-1 expression in pDCs is down-regulated in the presence of interleukin (IL)-3, thus indicating coordinated functions with NKp44, another pDC inhibitory receptor, which is conversely induced by IL-3. Nevertheless, the expression of NKp44 in pDCs isolated from secondary lymphoid organs, which is thought to be influenced by IL-3, is not coupled to a decreased expression of LAIR-1. Interestingly, pDCs isolated from peripheral blood of systemic lupus erithematosus (SLE) patients express lower levels of LAIR-1 while displaying slight but consistent expression of NKp44, usually undetectable on pDCs derived from healthy donors. Using sera derived from SLE patients, we show that LAIR-1 and NKp44 display synergistic inhibitory effects on IFNα production by interleukin IL-3 cultured pDCs stimulated with DNA immunocomplexes. In conclusion, our results indicate that the inhibitory function of LAIR-1 may play a relevant role in the mechanisms controlling IFNα production by pDCs both in normal and pathological innate immune responses

    Novel approaches for immune reconstitution and adaptive immune modeling with human pluripotent stem cells

    Get PDF
    Pluripotent stem cells have the capacity to generate all cell lineages, and substantial progress has been made in realizing this potential. One fascinating but as yet unrealized possibility is the differentiation of pluripotent stem cells into thymic epithelial cells. The thymus is a primary lymphoid organ essential for naïve T-cell generation. T cells play an important role in adaptive immunity, and their loss or dysfunction underlies in a wide range of autoimmune and infectious diseases. T cells are generated and selected through interaction with thymic epithelial cells, the functionally essential element of thymus. The ability to generate functional thymic epithelial cells from pluripotent stem cells would have applications in modeling human immune responses in mice, in tissue transplantation, and in modulating autoimmune and infectious disease
    corecore