34 research outputs found

    Inhibition of translation by poliovirus: Inactivation of a specific initiation factor

    Get PDF
    Translation of vesicular stomatitis virus (VSV) mRNA, like host mRNA translation, is inhibited in cells infected with poliovirus. To study the mechanism of poliovirus-induced inhibition of protein synthesis, we prepared extracts from poliovirus-infected and uninfected HeLa cells. Poliovirus mRNA was translated in lysates from both infected and uninfected cells, while VSV mRNA was translated only in the lysate from uninfected cells. Addition of purified translation initiation factors to the extract from infected cells showed that one factor, eIF-4B, could restore VSV mRNA translation in the infected lysate, but did not increase poliovirus mRNA translation. Further experiments involving translation of VSV mRNA in mixed extracts from poliovirus-infected and uninfected cells showed (i) that there was not an excess of an inhibitor of VSV mRNA translation in the infected lysate, but (ii) that an activity that caused a slow inactivation of eIF-4B was present in the infected lysate. Inactivation of eIF-4B appears to be the mechanism by which poliovirus infection causes a selective inhibition of translation

    Purification of a factor that restores translation of vesicular stomatitis virus mRNA in extracts from poliovirus-infected HeLa cells

    Get PDF
    It was previously shown that the poliovirus-induced inhibition of translation of capped mRNAs can be reversed by a protein found in preparations of the eukaryotic initiation factor eIF-4B [Rose, J. K., Trachsel, H., Leong, K. & Baltimore, D. (1978) Proc. Natl. Acad. Sci. USA 75, 2732--2736]. This "restoring factor" has now been purified from a high-salt wash of rabbit reticulocyte ribosomes by taking advantage of its tight association with factor eIF-3 at low salt concentrations. It did not copurify with the major M_r 80,000 polypeptide of eIF-4B preparations but did copurify with a M_r 24,000 polypeptide previously shown to bind to the cap structures of mRNAs [Sonenberg, N., Rupprecht, K. M., Hecht, S. M. & Shatkin, A. J. (1979) Proc. Natl. Acad. Sci. USA 76, 4345--4349]. Both the electrophoretic mobility and the tryptic peptide pattern of the restoring factor were indistinguishable from those of the cap-binding protein, and the restoring factor could be crosslinked to the 5'-terminal cap on mRNA. Thus, is appears that poliovirus inhibits cellular protein synthesis by inactivation of some crucial property of the cap-binding protein

    The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine

    Get PDF
    We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond timeresolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν′1 (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S1 S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm−1. The S1 S0 internal conversion rate constant increases from kIC = 2 · 109 s−1 near the S1(v = 0) level to 1 · 1011 s−1 at Eexc = 516 cm−1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC; it increases from kISC = 2 · 108 s−1 near S1(v = 0) to kISC = 2 · 109 s−1 at Eexc = 516 cm−1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T2 (3nπ∗) state lies >1500 cm−1 above S1(v = 0), so S1 T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S0 → S1 spectrum. The effect of methylation on the radiationless decay to S0 and ISC to T1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanismsThis research has been supported by the Schweiz. Nationalfonds (Grant Nos. 121993 and 132540), the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from Catalonia (Spain) (Grant No. 2014SGR1202), the Ministerio de Economía y Competividad (MINECO) from Spain (Grant No. CTQ2015-69363-P), and the National Natural Science Foundation of China (Grant No. 21303007

    Gas-Phase Cytosine and Cytosine-N 1 -Derivatives Have 0.1–1 ns Lifetimes Near the S 1 State Minimum

    Get PDF
    Ultraviolet radiative damage to DNA is inefficient because of the ultrafast S1 ⇝ S0 internal conversion of its nucleobases. Using picosecond pump–ionization delay measurements, we find that the S1(1ππ*) state vibrationless lifetime of gas-phase keto-amino cytosine (Cyt) is τ = 730 ps or ∼700 times longer than that measured by femtosecond pump–probe ionization at higher vibrational excess energy, Eexc. N1-Alkylation increases the S1 lifetime up to τ = 1030 ps for N1-ethyl-Cyt but decreases it to 100 ps for N1-isopropyl-Cyt. Increasing the vibrational energy to Eexc = 300–550 cm–1 decreases the lifetimes to 20–30 ps. The nonradiative dynamics of S1 cytosine is not solely a property of the amino-pyrimidinone chromophore but is strongly influenced by the N1-substituent. Correlated excited-state calculations predict that the gap between the S2(1nOπ*) and S1(1ππ*) states decreases along the series of N1-derivatives, thereby influencing the S1 state lifetime

    The excited-state structure, vibrations, lifetimes, and nonradiative dynamics of jet-cooled 1-methylcytosine

    Get PDF
    We have investigated the S0 → S1 UV vibronic spectrum and time-resolved S1 state dynamics of jet-cooled amino-keto 1-methylcytosine (1MCyt) using two-color resonant two-photon ionization, UV/UV holeburning and depletion spectroscopies, as well as nanosecond and picosecond timeresolved pump/delayed ionization measurements. The experimental study is complemented with spin-component-scaled second-order coupled-cluster and multistate complete active space second order perturbation ab initio calculations. Above the weak electronic origin of 1MCyt at 31 852 cm−1 about 20 intense vibronic bands are observed. These are interpreted as methyl group torsional transitions coupled to out-of-plane ring vibrations, in agreement with the methyl group rotation and out-of-plane distortions upon 1ππ∗ excitation predicted by the calculations. The methyl torsion and ν′1 (butterfly) vibrations are strongly coupled, in the S1 state. The S0 → S1 vibronic spectrum breaks off at a vibrational excess energy Eexc ∼ 500 cm−1, indicating that a barrier in front of the ethylene-type S1 S0 conical intersection is exceeded, which is calculated to lie at Eexc = 366 cm−1. The S1 S0 internal conversion rate constant increases from kIC = 2 · 109 s−1 near the S1(v = 0) level to 1 · 1011 s−1 at Eexc = 516 cm−1. The 1ππ∗ state of 1MCyt also relaxes into the lower-lying triplet T1 (3ππ∗) state by intersystem crossing (ISC); the calculated spin-orbit coupling (SOC) value is 2.4 cm−1. The ISC rate constant is 10–100 times lower than kIC; it increases from kISC = 2 · 108 s−1 near S1(v = 0) to kISC = 2 · 109 s−1 at Eexc = 516 cm−1. The T1 state energy is determined from the onset of the time-delayed photoionization efficiency curve as 25 600 ± 500 cm−1. The T2 (3nπ∗) state lies >1500 cm−1 above S1(v = 0), so S1 T2 ISC cannot occur, despite the large SOC parameter of 10.6 cm−1. An upper limit to the adiabatic ionization energy of 1MCyt is determined as 8.41 ± 0.02 eV. Compared to cytosine, methyl substitution at N1 lowers the adiabatic ionization energy by ≥0.32 eV and leads to a much higher density of vibronic bands in the S0 → S1 spectrum. The effect of methylation on the radiationless decay to S0 and ISC to T1 is small, as shown by the similar break-off of the spectrum and the similar computed mechanismsThis research has been supported by the Schweiz. Nationalfonds (Grant Nos. 121993 and 132540), the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) from Catalonia (Spain) (Grant No. 2014SGR1202), the Ministerio de Economía y Competividad (MINECO) from Spain (Grant No. CTQ2015-69363-P), and the National Natural Science Foundation of China (Grant No. 21303007

    Pathogens and host immunity in the ancient human oral cavity.

    Get PDF
    Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first, to our knowledge, high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, 'red complex' pathogens and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity and diet, thereby extending direct investigation of common diseases into the human evolutionary past

    Wer ist der typische Nationalparkgast? Und wann wandert er wo?

    Full text link
    corecore