29 research outputs found

    Alemtuzumab CARE-MS II 5-year follow-up: Efficacy and safety findings.

    Get PDF
    OBJECTIVE: To evaluate 5-year efficacy and safety of alemtuzumab in patients with active relapsing-remitting multiple sclerosis and inadequate response to prior therapy. METHODS: In the 2-year Comparison of Alemtuzumab and Rebif Efficacy in Multiple Sclerosis (CARE-MS) II study (NCT00548405), alemtuzumab-treated patients received 2 courses (baseline and 12 months later). Patients could enter an extension (NCT00930553), with as-needed alemtuzumab retreatment for relapse or MRI activity. Annualized relapse rate (ARR), 6-month confirmed disability worsening (CDW; ≥1-point Expanded Disability Status Scale [EDSS] score increase [≥1.5 if baseline EDSS = 0]), 6-month confirmed disability improvement (CDI; ≥1-point EDSS decrease [baseline score ≥2.0]), no evidence of disease activity (NEDA), brain volume loss (BVL), and adverse events (AEs) were assessed. RESULTS: Most alemtuzumab-treated patients (92.9%) who completed CARE-MS II entered the extension; 59.8% received no alemtuzumab retreatment. ARR was low in each extension year (years 3-5: 0.22, 0.23, 0.18). Through 5 years, 75.1% of patients were free of 6-month CDW; 42.9% achieved 6-month CDI. In years 3, 4, and 5, proportions with NEDA were 52.9%, 54.2%, and 58.2%, respectively. Median yearly BVL remained low in the extension (years 1-5: -0.48%, -0.22%, -0.10%, -0.19%, -0.07%). AE exposure-adjusted incidence rates in the extension were lower than in the core study. Thyroid disorders peaked at year 3, declining thereafter. CONCLUSIONS: Alemtuzumab provides durable efficacy through 5 years in patients with an inadequate response to prior therapy in the absence of continuous treatment. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that alemtuzumab provides efficacy and slowing of brain atrophy through 5 years

    Prevalence of Grey Matter Pathology in Early Multiple Sclerosis Assessed by Magnetization Transfer Ratio Imaging

    Get PDF
    The aim of the study was to assess the prevalence, the distribution and the impact on disability of grey matter (GM) pathology in early multiple sclerosis. Eighty-eight patients with a clinically isolated syndrome with a high risk developing multiple sclerosis were included in the study. Forty-four healthy controls constituted the normative population. An optimized statistical mapping analysis was performed to compare each subject's GM Magnetization Transfer Ratio (MTR) imaging maps with those of the whole group of controls. The statistical threshold of significant GM MTR decrease was determined as the maximum p value (p<0.05 FDR) for which no significant cluster survived when comparing each control to the whole control population. Using this threshold, 51% of patients showed GM abnormalities compared to controls. Locally, 37% of patients presented abnormalities inside the limbic cortex, 34% in the temporal cortex, 32% in the deep grey matter, 30% in the cerebellum, 30% in the frontal cortex, 26% in the occipital cortex and 19% in the parietal cortex. Stepwise regression analysis evidenced significant association (p = 0.002) between EDSS and both GM pathology (p = 0.028) and T2 white matter lesions load (p = 0.019). In the present study, we evidenced that individual analysis of GM MTR map allowed demonstrating that GM pathology is highly heterogeneous across patients at the early stage of MS and partly underlies irreversible disability

    International consensus diagnostic criteria for neuromyelitis optica spectrum disorders.

    Get PDF
    Neuromyelitis optica (NMO) is an inflammatory CNS syndrome distinct from multiple sclerosis (MS) that is associated with serum aquaporin-4 immunoglobulin G antibodies (AQP4-IgG). Prior NMO diagnostic criteria required optic nerve and spinal cord involvement but more restricted or more extensive CNS involvement may occur. The International Panel for NMO Diagnosis (IPND) was convened to develop revised diagnostic criteria using systematic literature reviews and electronic surveys to facilitate consensus. The new nomenclature defines the unifying term NMO spectrum disorders (NMOSD), which is stratified further by serologic testing (NMOSD with or without AQP4-IgG). The core clinical characteristics required for patients with NMOSD with AQP4-IgG include clinical syndromes or MRI findings related to optic nerve, spinal cord, area postrema, other brainstem, diencephalic, or cerebral presentations. More stringent clinical criteria, with additional neuroimaging findings, are required for diagnosis of NMOSD without AQP4-IgG or when serologic testing is unavailable. The IPND also proposed validation strategies and achieved consensus on pediatric NMOSD diagnosis and the concepts of monophasic NMOSD and opticospinal MS.consensus development conferencejournal articlepractice guidelineresearch support, non-u.s. gov't2015 Jul 142015 06 19importe

    Efficacy and Safety of Alemtuzumab Through 9 Years of Follow-up in Patients with Highly Active Disease: Post Hoc Analysis of CARE-MS I and II Patients in the TOPAZ Extension Study

    Get PDF
    Background: Alemtuzumab efficacy versus subcutaneous interferon-β-1a (SC IFNB-1a) was demonstrated over 2 years in patients with relapsing-remitting multiple sclerosis, with continued efficacy over 7 additional years. Alemtuzumab is included as a recommended treatment for patients with highly active disease (HAD) by the American Academy of Neurology Practice Guidelines, and the label indication in Europe was recently restricted to the treatment of HAD patients. There is currently no consensus definition for HAD, and alemtuzumab efficacy across various HAD definitions has not been explored previously. Objectives: In this post hoc analysis, we assess the efficacy and safety of alemtuzumab in Comparison of Alemtuzumab and Rebif® Efficacy in Multiple Sclerosis (CARE-MS) trial patients who met criteria for at least one of four separate definitions of HAD (one primary and three alternatives). Over 2 years, alemtuzumab-treated HAD patients were compared with SC IFNB-1a-treated HAD patients, with additional 7-year follow-up in patients from the alemtuzumab arm. Methods: Patients in the CARE-MS studies received either alemtuzumab (baseline: 5 days; 12 months later: 3 days) or SC IFNB-1a (3 times weekly). Alemtuzumab-treated patients who enrolled in the extensions could receive additional courses ≥ 12 months apart. Four definitions of HAD were applied to assess alemtuzumab efficacy: the pre-specified primary definition (two or more relapses in the year prior to baseline and at least one gadolinium [Gd]-enhancing lesion at baseline) and three alternative definitions that focused on relapse, magnetic resonance imaging (MRI), or prior treatment response criteria. Efficacy outcomes were annualized relapse rate, change in Expanded Disability Status Scale score, 6-month confirmed disability worsening, 6-month confirmed disability improvement, MRI disease activity, and brain volume change. Adverse events were summarized for HAD patients meeting the primary definition. Results: In the pooled CARE-MS population, 208 alemtuzumab-treated patients met the primary HAD definition. Annualized relapse rate was 0.27 in years 0–2 and 0.16 in years 3–9. Over 9 years, 62% of patients were free of 6-month confirmed disability worsening, 50% had 6-month confirmed disability improvement, and median cumulative change in brain volume was − 2.15%. During year 9, 62% had no evidence of disease activity, and 69% were free of MRI disease activity. Similar efficacy outcomes were observed using an alternative relapse-driven HAD definition. For patients meeting alternative HAD definitions focused on either higher MRI lesion counts or disease activity while on prior therapy, reduced efficacy for some endpoints was seen. Safety was consistent with the overall CARE-MS population through year 9. Conclusions: Over 9 years, alemtuzumab efficacy was maintained in CARE-MS HAD patients based on four HAD definitions. These results support intervention with alemtuzumab in patients with early indicators of HAD, including frequent relapse without high MRI activity. No safety signals were observed over 9 years that were unique to the HAD populations. ClinicalTrials.gov Identifiers: NCT00530348; NCT00548405; NCT00930553; NCT02255656

    Alemtuzumab CARE-MS I 5-year follow-up: Durable efficacy in the absence of continuous MS therapy

    Full text link
    Objective:To evaluate 5-year efficacy and safety of alemtuzumab in treatment-naive patients with active relapsing-remitting MS (RRMS) (CARE-MS I; NCT00530348).Methods:Alemtuzumab-treated patients received treatment courses at baseline and 12 months later; after the core study, they could enter an extension (NCT00930553) with as-needed alemtuzumab retreatment for relapse or MRI activity. Assessments included annualized relapse rate (ARR), 6-month confirmed disability worsening (CDW; ≥1-point Expanded Disability Status Scale [EDSS] score increase [≥1.5 if baseline EDSS = 0]), 6-month confirmed disability improvement (CDI; ≥1-point EDSS decrease [baseline score ≥2.0]), no evidence of disease activity (NEDA), brain volume loss (BVL), and adverse events (AEs).Results:Most alemtuzumab-treated patients (95.1%) completing CARE-MS I enrolled in the extension; 68.5% received no additional alemtuzumab treatment. ARR remained low in years 3, 4, and 5 (0.19, 0.14, and 0.15). Over years 0–5, 79.7% were free of 6-month CDW; 33.4% achieved 6-month CDI. Most patients (61.7%, 60.2%, and 62.4%) had NEDA in years 3, 4, and 5. Median yearly BVL improved over years 2–4, remaining low in year 5 (years 1–5: −0.59%, −0.25%, −0.19%, −0.15%, and −0.20%). Exposure-adjusted incidence rates of most AEs declined in the extension relative to the core study. Thyroid disorder incidences peaked at year 3 and subsequently declined.Conclusions:Based on these data, alemtuzumab provides durable efficacy through 5 years in the absence of continuous treatment, with most patients not receiving additional courses.ClinicalTrials.gov identifier:NCT00530348; NCT00930553.Classification of evidence:This study provides Class III evidence that alemtuzumab durably improves efficacy outcomes and slows BVL in patients with RRMS.</jats:sec

    Impact of exposure to interferon beta-1a on outcomes in patients with relapsing–remitting multiple sclerosis: exploratory analyses from the PRISMS long-term follow-up study

    No full text
    Objective: To explore the effects of exposure to subcutaneous (sc) interferon (IFN) beta-1a on efficacy in patients with relapsing–remitting multiple sclerosis (RRMS) enrolled in the PRISMS (Prevention of Relapses and disability by Interferon beta-1a Subcutaneously in Multiple Sclerosis) study

    Diagnosis of Progressive Multiple Sclerosis from the Imaging Perspective: A Review

    No full text
    Importance: Although magnetic resonance imaging (MRI) is useful for monitoring disease dissemination in space and over time and excluding multiple sclerosis (MS) mimics, there has been less application of MRI to progressive MS, including diagnosing primary progressive (PP) MS and identifying patients with relapsing-remitting (RR) MS who are at risk of developing secondary progressive (SP) MS. This review addresses clinical application of MRI for both diagnosis and prognosis of progressive MS. Observations: Although nonspecific, some spinal cord imaging features (diffuse abnormalities and lesions involving gray matter [GM] and ≥2 white matter columns) are typical of PPMS. In patients with PPMS and those with relapse-onset MS, location of lesions in critical central nervous system regions (spinal cord, infratentorial regions, and GM) and MRI-detected high inflammatory activity in the first years after diagnosis are risk factors for long-term disability and future progressive disease course. These measures are evaluable in clinical practice. In patients with established MS, GM involvement and neurodegeneration are associated with accelerated clinical worsening. Subpial demyelination and slowly expanding lesions are novel indicators of progressive MS. Conclusions and Relevance: Diagnosis of PPMS is more challenging than diagnosis of RRMS. No qualitative clinical, immunological, histopathological, or neuroimaging features differentiate PPMS and SPMS; both are characterized by imaging findings reflecting neurodegeneration and are also impacted by aging and comorbidities. Unmet diagnostic needs include identification of MRI markers capable of distinguishing PPMS from RRMS and predicting the evolution of RRMS to SPMS. Integration of multiple parameters will likely be essential to achieve these aims
    corecore