31 research outputs found

    Analysis and approximation of some Shape-from-Shading models for non-Lambertian surfaces

    Full text link
    The reconstruction of a 3D object or a scene is a classical inverse problem in Computer Vision. In the case of a single image this is called the Shape-from-Shading (SfS) problem and it is known to be ill-posed even in a simplified version like the vertical light source case. A huge number of works deals with the orthographic SfS problem based on the Lambertian reflectance model, the most common and simplest model which leads to an eikonal type equation when the light source is on the vertical axis. In this paper we want to study non-Lambertian models since they are more realistic and suitable whenever one has to deal with different kind of surfaces, rough or specular. We will present a unified mathematical formulation of some popular orthographic non-Lambertian models, considering vertical and oblique light directions as well as different viewer positions. These models lead to more complex stationary nonlinear partial differential equations of Hamilton-Jacobi type which can be regarded as the generalization of the classical eikonal equation corresponding to the Lambertian case. However, all the equations corresponding to the models considered here (Oren-Nayar and Phong) have a similar structure so we can look for weak solutions to this class in the viscosity solution framework. Via this unified approach, we are able to develop a semi-Lagrangian approximation scheme for the Oren-Nayar and the Phong model and to prove a general convergence result. Numerical simulations on synthetic and real images will illustrate the effectiveness of this approach and the main features of the scheme, also comparing the results with previous results in the literature.Comment: Accepted version to Journal of Mathematical Imaging and Vision, 57 page

    A discrete Hughes' model for pedestrian flow on graphs

    Get PDF
    In this paper, we introduce a discrete time-finite state model for pedestrian flow on a graph in the spirit of the Hughes dynamic continuum model. The pedestrians, represented by a density function, move on the graph choosing a route to minimize the instantaneous travel cost to the destination. The density is governed by a conservation law while the minimization principle is described by a graph eikonal equation. We show that the model is well posed and we implement some numerical examples to demonstrate the validity of the proposed model

    A High-Order Scheme for Image Segmentation via a modified Level-Set method

    Get PDF
    In this paper we propose a high-order accurate scheme for image segmentation based on the level-set method. In this approach, the curve evolution is described as the 0-level set of a representation function but we modify the velocity that drives the curve to the boundary of the object in order to obtain a new velocity with additional properties that are extremely useful to develop a more stable high-order approximation with a small additional cost. The approximation scheme proposed here is the first 2D version of an adaptive "filtered" scheme recently introduced and analyzed by the authors in 1D. This approach is interesting since the implementation of the filtered scheme is rather efficient and easy. The scheme combines two building blocks (a monotone scheme and a high-order scheme) via a filter function and smoothness indicators that allow to detect the regularity of the approximate solution adapting the scheme in an automatic way. Some numerical tests on synthetic and real images confirm the accuracy of the proposed method and the advantages given by the new velocity.Comment: Accepted version for publication in SIAM Journal on Imaging Sciences, 86 figure

    Shape Optimization for Thermal Insulation Problems

    Full text link
    [EN] In this work we consider two domains: an external domain whose geometry varies, and an internal fixed one. From the thermal insulation viewpoint, we are considering a body to be insulated, enveloped in a layer of insulator, and we want to find the best shape for the thermal insulator, in terms of heat dispersion. Mathematically, our problem is described by an elliptic partial differential equation with Dirichlet-Robin boundary conditions.This research has been carried on within the PON R&I 2014-2020 - “AIM: Attraction and International Mobility” (Linea 2.1, project AIM1834118 - 2, CUP: E61G19000050001). The authors are members of the INdAM Research Group GNCS.Tozza, S.; Toraldo, G. (2022). Shape Optimization for Thermal Insulation Problems. En Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 11-15. https://doi.org/10.4995/YIC2021.2021.12288OCS111

    A unified approach to the well-posedness of some non-Lambertian models in Shape-from-Shading theory

    Full text link
    In this paper we show that the introduction of an attenuation factor in the %image irradiance brightness equations relative to various perspective Shape from Shading models allows to make the corresponding differential problems well-posed. We propose a unified approach based on the theory of viscosity solution and we show that the brightness equations with the attenuation term admit a unique viscosity solution. We also discuss in detail the possible boundary conditions that we can use for the Hamilton-Jacobi equations associated to these models

    An overview of some mathematical techniques and problems linking 3D vision to 3D printing

    Get PDF
    Computer Vision and 3D printing have rapidly evolved in the last 10 years but interactions among them have been very limited so far, despite the fact that they share several mathematical techniques. We try to fill the gap presenting an overview of some techniques for Shape-from-Shading problems as well as for 3D printing with an emphasis on the approaches based on nonlinear partial differential equations and optimization. We also sketch possible couplings to complete the process of object manufacturing starting from one or more images of the object and ending with its final 3D print. We will give some practical examples of this procedure

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Full text link
    In this paper we present a differential approach to photo-polarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method.Comment: To appear at International Conference on Computer Vision (ICCV), Venice, Italy, October 22-29, 201

    Linear Depth Estimation from an Uncalibrated, Monocular Polarisation Image

    Get PDF
    We present a method for estimating surface height directly from a single polarisation image simply by solving a large, sparse system of linear equations. To do so, we show how to express polarisation constraints as equations that are linear in the unknown depth. The ambiguity in the surface normal azimuth angle is resolved globally when the optimal surface height is reconstructed. Our method is applicable to objects with uniform albedo exhibiting diffuse and specular reflectance. We extend it to an uncalibrated scenario by demonstrating that the illumination (point source or first/second order spherical harmonics) can be estimated from the polarisation image, up to a binary convex/concave ambiguity. We believe that our method is the first monocular, passive shape-from-x technique that enables well-posed depth estimation with only a single, uncalibrated illumination condition. We present results on glossy objects, including in uncontrolled, outdoor illumination

    Linear Differential Constraints for Photo-polarimetric Height Estimation

    Get PDF
    In this paper we present a differential approach to photopolarimetric shape estimation. We propose several alternative differential constraints based on polarisation and photometric shading information and show how to express them in a unified partial differential system. Our method uses the image ratios technique to combine shading and polarisation information in order to directly reconstruct surface height, without first computing surface normal vectors. Moreover, we are able to remove the non-linearities so that the problem reduces to solving a linear differential problem. We also introduce a new method for estimating a polarisation image from multichannel data and, finally, we show it is possible to estimate the illumination directions in a two source setup, extending the method into an uncalibrated scenario. From a numerical point of view, we use a least-squares formulation of the discrete version of the problem. To the best of our knowledge, this is the first work to consider a unified differential approach to solve photo-polarimetric shape estimation directly for height. Numerical results on synthetic and real-world data confirm the effectiveness of our proposed method

    Height-from-Polarisation with Unknown Lighting or Albedo

    Get PDF
    We present a method for estimating surface height directly from a single polarisation image simply by solving a large, sparse system of linear equations. To do so, we show how to express polarisation constraints as equations that are linear in the unknown height. The local ambiguity in the surface normal azimuth angle is resolved globally when the optimal surface height is reconstructed. Our method is applicable to dielectric objects exhibiting diffuse and specular reflectance, though lighting and albedo must be known. We relax this requirement by showing that either spatially varying albedo or illumination can be estimated from the polarisation image alone using nonlinear methods. In the case of illumination, the estimate can only be made up to a binary ambiguity which we show is a generalised Bas-relief transformation corresponding to the convex/concave ambiguity. We believe that our method is the first passive, monocular shape-from-x technique that enables well-posed height estimation with only a single, uncalibrated illumination condition. We present results on real world data, including in uncontrolled, outdoor illumination
    corecore