89 research outputs found

    A comparison of soda and soda-AQ pulps from cotton stalks

    Get PDF
    In this study, cotton stalks (Gossypium hirsutum L.) were cooked using soda and soda-anthraquinone (AQ) process. Nine soda cooks were conducted by changing cooking conditions including active alkali charge and pulping time. Soda-AQ cooks were obtained by adding 0.075, 0.10, 0.15, 0.2% AQ (based on o.d stalks) to optimum soda pulping. Adding AQ to soda pulps led to the increase in regarding to pulp yield and kappa numbers. On the other hand, soda-AQ pulps made from cotton stalks showed higher mechanical properties than soda pulps. The results indicated a major increase in pulp brightness when soda pulping was modified with %0.15 AQ. Also, the results showed that better pulp and paper can be produced from cotton stalks by soda-AQ process compared to the soda process

    Agent-based Transport Models as a Tool for Evaluating Mobility

    Get PDF
    The transportation system is undergoing fundamental transformations through emerging technologies. Some of these innovations have the potential to contribute to the sustainable transformation of the transportation system, such as electric vehicles (EVs) and shared autonomous electric vehicles (SEAVs). Before enacting policies to support these technologies or limit the use of undesirable ones, decision-makers need to better understand these innovations and the consequences of the policy to be implemented. This insight can be provided with models that are capable of reflecting the dynamics of new mobility, and interactions of travelers with each other and the infrastructure. This thesis describes the development of the Synthetic Swedish Mobility (SySMo) model that represents the travel behavior of an advanced synthetic population of Sweden, using an agent-based framework. The SySMo model provides a scaffold to build decision support tools through which present and future mobility scenarios can be analyzed and thus aid decision-makers in formulating informed policies. The SySMo model comprises a series of modules that utilize a stochastic approach combined with Neural Networks, a machine learning technique to generate a synthetic population and behaviorally realistic daily activity-travel schedules for each agent.The model first generates a synthetic replica of the population characterized by various socio-economic attributes using zone-level statistics and the national travel survey as input data. Then, daily heterogeneous activity patterns showing activity and trip features are assigned to each individual in the population with a high spatio-temporal resolution. To assess the SySMo model performance in each module, in-sample evaluations (i.e., comparing the model outputs with input data to measure the similarity of the results) and out-of-sample (i.e., comparing the model outputs with data never used in the model) evaluations are performed. The current model offers a valuable planning and visualization tool to illustrate mobility patterns of the Swedish population. The methodology can also be broadly applied to other regions with other relevant data and carefully calibrated parameters

    Characterization and evaluation of Paulownia elongota as a raw material for paper production

    Get PDF
    Paulownia elongota, one of the most fast growing species of the world, was evaluated as raw material for pulp and paper production. The chemical, morphological and anatomical aspects of paulownia woodwere determined. The lignin, holocellulose and ∝-cellulose contents in P. elongota wood were comparable to those of some common non-wood and hardwood raw materials. Different chemical pulping procedures were applied to P. elongota wood to evaluate its pulping potential. Paper strength properties and acidic group content bound to the cell wall were determined. The alkali solubility, water solubility and alcohol-benzene extractive content were higher than those from wood and most nonwoods. The fiber length of 0.83 mm was observed, which is close to low end of the hardwoods but fiber diameter was very wide, similar to that of softwoods. The pulpability of paulownia wood was alsostudied. The pulp yield and viscosity were very low and the kappa numbers were high. The strength properties were comparable to those of some wood and non-wood pulps. Although, paulownia pulpsare considered as low quality materials, it can be used for paper production when mixed with long fibrous materials

    Impacts of charging behavior on BEV charging infrastructure needs and energy use

    Get PDF
    Battery electric vehicles (BEVs) are vital in the sustainable future of transport systems. Increased BEV adoption makes the realistic assessment of charging infrastructure demand critical. The current literature on charging infrastructure often uses outdated charging behavior assumptions such as universal access to home chargers and the "Liquid-fuel" mental model. We simulate charging infrastructure needs using a large-scale agent-based simulation of Sweden with detailed individual characteristics, including dwelling types and activity patterns. The two state-of-art archetypes of charging behaviors, "Plan-ahead" and "Event-triggered," mirror the current infrastructure built-up, suggesting 2.3-4.5 times more public chargers per BEV than the "Liquid-fuel" mental model. We also estimate roughly 30-150 BEVs served by a slow charger may be needed for non-home residential overnight charging

    Synthetic Sweden Mobility (SySMo) Model Documentation

    Get PDF
    This document describes a decision support framework using a combination of several state-of-the-art computing tools and techniques in synthetic information systems, and large-scale agent-based simulations. In this work, we create a synthetic population of Sweden and their mobility patterns that are composed of three major components: population synthesis, activity generation, and location assignment. The document describes the model structure, assumptions, and validation of results

    Tissue Mechanics Regulate Mitotic Nuclear Dynamics during Epithelial Development.

    Get PDF
    Cell divisions are essential for tissue growth. In pseudostratified epithelia, where nuclei are staggered across the tissue, each nucleus migrates apically before undergoing mitosis. Successful apical nuclear migration is critical for planar-orientated cell divisions in densely packed epithelia. Most previous investigations have focused on the local cellular mechanisms controlling nuclear migration. Inter-species and inter-organ comparisons of different pseudostratified epithelia suggest global tissue architecture may influence nuclear dynamics, but the underlying mechanisms remain elusive. Here, we use the developing Drosophila wing disc to systematically investigate, in a single epithelial type, how changes in tissue architecture during growth influence mitotic nuclear migration. We observe distinct nuclear dynamics at discrete developmental stages, as epithelial morphology changes. We use genetic and physical perturbations to show a direct effect of cell density on mitotic nuclear positioning. We find Rho kinase and Diaphanous, which facilitate mitotic cell rounding in confined cell conditions, are essential for efficient apical nuclear movement. Perturbation of Diaphanous causes increasing defects in apical nuclear migration as the tissue grows and cell density increases, and these defects can be reversed by acute physical reduction of cell density. Our findings reveal how the mechanical environment imposed on cells within a tissue alters the molecular and cellular mechanisms adopted by single cells for mitosis

    Fundamental physical cellular constraints drive self-organization of tissues

    Get PDF
    Morphogenesis is driven by small cell shape changes that modulate tissue organization. Apical surfaces of proliferating epithelial sheets have been particularly well studied. Currently, it is accepted that a stereotyped distribution of cellular polygons is conserved in proliferating tissues among metazoans. In this work, we challenge these previous findings showing that diverse natural packed tissues have very different polygon distributions. We use Voronoi tessellations as a mathematical framework that predicts this diversity. We demonstrate that Voronoi tessellations and the very different tissues analysed share an overriding restriction: the frequency of polygon types correlates with the distribution of cell areas. By altering the balance of tensions and pressures within the packed tissues using disease, genetic or computer model perturbations, we show that as long as packed cells present a balance of forces within tissue, they will be under a physical constraint that limits its organization. Our discoveries establish a new framework to understand tissue architecture in development and disease. Synopsis Cell shapes in naturally packed tissues have different polygon distributions. Voronoi tessellations-based analysis suggests that polygon frequencies are restricted by the distribution of cell areas, and that this restriction emanates from the balance of forces within the tissue. Cell shapes in natural packed tissues present very different polygon distributions. These patterns can be reproduced by Voronoi tessellations. Natural tissues and Voronoi diagrams share some geometrical properties. There is a physical constraint that limits the organization of natural tissues. Unbalance of forces within the natural tissue breaks this restriction. Cell shapes in naturally packed tissues have different polygon distributions. Voronoi tessellations-based analysis suggests that polygon frequencies are restricted by the distribution of cell areas, and that this restriction emanates from the balance of forces within the tissue.Ministerio de Ciencia e Innovación BFU2011-2573

    Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments

    Get PDF
    Cells can move through extracellular environments with varying geometries and adhesive properties. Adaptation to these differences is achieved by switching between different modes of motility, including lamellipod-driven and blebbing motility. Further, cells can modulate their level of adhesion to the extracellular matrix (ECM) depending on both the level of force applied to the adhesions and cell intrinsic biochemical properties. We have constructed a computational model of cell motility to investigate how motile cells transition between extracellular environments with varying surface continuity, confinement and adhesion. Changes in migration strategy are an emergent property of cells as the ECM geometry and adhesion changes. The transition into confined environments with discontinuous ECM fibres is sufficient to induce shifts from lamellipod-based to blebbing motility, while changes in confinement alone within a continuous geometry are not. The geometry of the ECM facilitates plasticity, by inducing shifts where the cell has high marginal gain from a mode change, and conserving persistency where the cell can continue movement regardless of the motility mode. This regulation of cell motility is independent of global changes in cytoskeletal properties, but requires locally higher linkage between the actin network and the plasma membrane at the cell rear, and changes in internal cell pressure. In addition to matrix geometry, we consider how cells might transition between ECM of different adhesiveness. We find that this requires positive feedback between the forces cells apply on the adhesion points, and the strength of the cell–ECM adhesions on those sites. This positive feedback leads to the emergence of a small number of highly adhesive cores, similar to focal adhesions. While the range of ECM adhesion levels the cell can invade is expanded with this feedback mechanism; the velocities are lowered for conditions where the positive feedback is not vital. Thus, plasticity of cell motility sacrifices the benefits of specialization, for robustness

    EpiGraph: an open-source platform to quantify epithelial organization

    Get PDF
    Here we present EpiGraph, an image analysis tool that quantifies epithelial organization. Our method combines computational geometry and graph theory to measure the degree of order of any packed tissue. EpiGraph goes beyond the traditional polygon distribution analysis, capturing other organizational traits that improve the characterization of epithelia. EpiGraph can objectively compare the rearrangements of epithelial cells during development and homeostasis to quantify how the global ensemble is affected. Importantly, it has been implemented in the open-access platform Fiji. This makes EpiGraph very user friendly, with no programming skills required.España Ministerio de Economia, Industria y Competitividad BFU2016-74975-PEspaña, Programa Ramón y Cajal (PI13/ 01347

    Polarization of Myosin II Refines Tissue Material Properties to Buffer Mechanical Stress

    Get PDF
    As tissues develop, they are subjected to a variety of mechanical forces. Some of these forces are instrumental in the development of tissues, while others can result in tissue damage. Despite our extensive understanding of force-guided morphogenesis, we have only a limited understanding of how tissues prevent further morphogenesis once the shape is determined after development. Here, through the development of a tissue-stretching device, we uncover a mechanosensitive pathway that regulates tissue responses to mechanical stress through the polarization of actomyosin across the tissue. We show that stretch induces the formation of linear multicellular actomyosin cables, which depend on Diaphanous for their nucleation. These stiffen the epithelium, limiting further changes in shape, and prevent fractures from propagating across the tissue. Overall, this mechanism of force-induced changes in tissue mechanical properties provides a general model of force buffering that serves to preserve the shape of tissues under conditions of mechanical stress
    corecore