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A B S T R A C T

Battery electric vehicles (BEVs) are vital in the sustainable future of transport systems. Increased
BEV adoption makes the realistic assessment of charging infrastructure demand critical. The
current literature on charging infrastructure often uses outdated charging behavior assumptions
such as universal access to home chargers and the ‘‘Liquid-fuel’’ mental model. We simulate
charging infrastructure needs using a large-scale agent-based simulation of Sweden with detailed
individual characteristics, including dwelling types and activity patterns. The two state-of-
art archetypes of charging behaviors, ‘‘Plan-ahead’’ and ‘‘Event-triggered’’, mirror the current
infrastructure built-up, suggesting 2.3–4.5 times more public chargers per BEV than the ‘‘Liquid-
fuel’’ mental model. We also estimate roughly 30–150 BEVs served by a slow charger may be
needed for non-home residential overnight charging.

. Introduction

Electric vehicles (EVs) will play a vital role in the sustainable transformation of future transport systems. Global EV sales reached
.75 million in 2021, doubling the sales number of 2020. The share of EVs in newly sold light-duty vehicles in 2021 reached 8.3%,
ost of which were battery electric vehicles (BEVs) (71%) (EV-volumes.com, 2022). European Union has passed an Executive Order

hat bans the sale of fossil-fuel cars by 2035 (electrive.com, 2022). Despite the need to increase the use of (electrified) public
ransport, biking and walking, driving private vehicles are still likely to be an important part of future travel. A future scenario of
00% BEV adoption will require careful consideration and infrastructure planning to accelerate the adoption of BEVs.

The infrastructure deployment should consider realistic charging behaviors (Chakraborty et al., 2019), which enables travelers
o maximize their desired daily activities (Metais et al., 2022). When designing the location and sizing of charging infrastructure,
versimplified assumptions are typically made in the literature about charging behaviors and access to home chargers. With 100%
EV adoption, people living in all types of dwellings will demand charging. How much public charging will be needed remains a
ey policy question.

This study brings insights into charging infrastructure planning using state-of-the-art understanding of BEV charging & discharg-
ng dynamics, and the corresponding quantification of charging demand for BEV owners in different dwellings. The study’s unique
ontribution is to deploy an advanced large-scale synthetic population in which we preserve realistic socioeconomic attributes
nd heterogeneous activity plans and implement a unique taxonomy of charging behaviors. Our results demonstrate that the
patiotemporal use patterns and the number of charging points at home, work, and other places for private BEV owners depend on
he consideration of different charging strategies.
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1.1. Related work

Charging infrastructure is vital to support the diffusion of BEVs. However, deploying charging infrastructure is expensive
nd faces the chicken-and-egg dilemma between infrastructure operators (investment costs and profitability) and BEV consumers
charging demand) (Metais et al., 2022). Optimal locations and sizing of charging points are crucial to furthering BEV adoption and
uaranteeing a good driving experience for BEV users without compromising their planned activities. The taxonomy of BEV charging
ptions to fulfill BEV users’ planned activities can be based on technology, e.g., non-contact charging, power rating, e.g., slow,
ntermediate, fast, and even ultra-fast charging (Suarez and Martinez, 2019), occasion, e.g., destination charging (Schmidt et al.,
020), etc.

Charging behavior is essentially a spatiotemporal concept, i.e., when and where BEV users access a specific charging point and for
ow long. Highlighting the behavioral aspect, we categorize the main charging options of BEV users into three groups: (1) overnight
harging (slow e.g., 3–11 kW) at a home garage or non-home residential parking spot, (2) daytime charging (slow to intermediate
.g., 7–22 kW) at workplaces, and other places such as shopping malls etc., and (3) fast charging at public places (e.g., 50–150 kW),
ostly along travel corridors to facilitate long-distance travel. Access to a home charger or a non-home residential parking spot leads

o less dependence on public charging infrastructure. Recent studies suggest that 50%–80% of all charging events occur at home
Option 1) (Hardman et al., 2018). For daytime charging (Option 2), public charging infrastructure complements home charging
nly in densely populated areas (Funke et al., 2019), and workplace charging accounts for 15%–25% of BEV commuters’ charging
vents (Hardman et al., 2018). Most of the evidence today is based on early adopters who are more likely to own detached houses
ith garages than the average population (Chakraborty et al., 2019). However, in places like the Netherlands with low availability
f private parking space (Hardman et al., 2018), non-home residential parking spots are needed for charging at night. In a future
f 100% BEV adoption, how much non-home charging is required for all dwellers remains an important policy question.

There are three broad categories of methods to determine the optimal locations and sizing of charging points: node-based, path-
ased, and tour-based (Deb et al., 2018). Node-based and path-based have mainly been used for planning fuel stations, but they
uffer from the lack of behavior dynamics and unrealistic charging speed of BEVs equivalent to refueling an internal combustion
ngine car (Metais et al., 2022). Tour-based (activity-based) methods more realistically reflect driving behaviors and charging
eeds (Metais et al., 2022) by using data at the level of individual car trajectories. These trajectories come from detailed real-world
riving records (Gnann et al., 2018) or simulated data from agent-based models (ABMs) (Zhuge and Shao, 2018; Márquez-Fernández
t al., 2021).

Most studies to date do not account for realistic charging behaviors (Patil et al., 2022) and varying access to a home charger.
or example, some studies locate the candidate charging stations at today’s fuel stations (Zafar et al., 2021). Other studies assume
hat BEV users will only charge when the state of charge (SOC) drops below a certain threshold (Wang et al., 2019; Kong et al.,
019). SOC ranges between 0 and 1, indicating how full the battery is with energy (1 = fully charged). These assumptions are based
n our understanding of how we refuel ICEVs despite the distinct characteristics of BEVs. For instance, BEVs need a significantly
onger time than ICEVs to charge. Therefore, charging behaviors would differ in how drivers plan their charging events to anticipate
lanned travels (Miralinaghi et al., 2020). The lack of complexity of charging behaviors in the literature is partly due to the lack
f data to make appropriate assumptions, and studies generally extrapolate from early adopters who mostly have access to home
hargers (Greaves et al., 2014). Future BEV users will develop different strategies for charging, depending on their activity plans,
ental models, pricing models, and willingness to pay. It remains unclear how these charging strategies affect charging demand

nd infrastructure. Last but not least, studies that assume all private BEV owners have access to home chargers (Pan et al., 2020)
ind that their need for daytime charging at work and other places is minimal (Greaves et al., 2014).

Charging infrastructure planning literature is often abstracted into an optimization problem of charge point placement and sizing.
ost studies aim to find the required number and location of charge points necessary to fulfill the travel demand of today’s car

sers.1 The optimization goal varies, including maximized distance traveled (Shahraki et al., 2015), minimized CO2 emissions (Liu
t al., 2019), and other aspects such as infrastructure costs. The optimal charging infrastructure calculated from solving spatial
ptimization problems is often found to be minimal, far below what is being deployed in reality. The mismatch is caused by comfort,
ounded rationality, and range anxiety toward, e.g., infrequent though highly valued long-distance and weekend trips, etc. (Funke
t al., 2019). This mismatch partly contributes to the chicken-and-egg dilemma. A question is worth asking to shed light on solving
he dilemma: what would be the charging demand if we provide BEV users with charge points when they want to, instead
f need to, charge their cars? The broader diffusion of BEVs calls for the sensible integration of this BEV users’ perspective in
uantifying charging infrastructure demand.

ABMs can bridge the gaps in the literature by simulating realistic charging strategies, heterogeneous home charger access of
large population, and integrating charging decisions from the BEV user’s perspective. ABMs are suitable for this study because

hey capture fundamental mechanisms of individual travel behaviors, the interactions between them and the environment, and the
mergence of aggregate patterns. For instance, transport energy demand is simulated in future scenarios of a varying adoption rate
f EVs (Novosel et al., 2015). For these types of problems, ABMs are superior because of their complete population coverage with
ocioeconomic attributes and behavior characteristics such as activities that can be modified for future scenarios (Metais et al.,
022). These characteristics empower simulating future scenarios and informing policymaking for charging infrastructure planning.

1 We should also recognize that the electrification of private cars alone is insufficient to achieve climate targets in line with the Paris Agreement (Brand
2

t al., 2020). It is necessary to promote modal shift from private cars to electrified and decarbonized public transport, biking, and walking.
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Fig. 1. Simulation flowchart for charging demand computation.

1.2. Outline of this study

This study aims to bridge the above-mentioned research gaps by applying agent-based modeling with a synthetic population of
Västra Götaland, Sweden. We simulate BEV driving & charging given their planned activities for typical weekdays. We calculate
the spatiotemporal patterns of charging demand considering different BEV charging strategies. We compare our results with today’s
charging infrastructure, highlighting the remaining infrastructure needs to support 100% BEV penetration to better inform future
planning.

The remainder of this paper is organized as follows. In Methods, we describe the analytic framework including the datasets,
simulation modules, and the methods for calculating charging demand. In Results, we present the outcomes of the simulation in
three parts: charging demand of individuals; charging infrastructure demand; and a spatial comparison with today’s charge points.
We discuss the results in Discussion where we also summarize the major contributions and limitations of this paper. To complement
the main body of this paper, Appendix A describes the mobility patterns of the applied car agents, while Appendix B presents
the sensitivity test results. The codes are available at https://github.com/TheYuanLiao/synthetic-sweden. The main data input and
output are publicly available (Liao et al., 2023).

2. Methods

The simulation framework is shown in Fig. 1. We use the synthetic population and their activity plans for an average weekday
from the Synthetic Sweden Mobility Model (SySMo) (Tozluoğlu et al., 2022). SySMo is an agent-based decision support framework
for modeling and analyzing transport scenarios. SySMo connects agents’ socioeconomic characteristics with heterogeneous daily
activity plans while preserving privacy. In this study, we focus on the 1.7 million residents in the Västra Götaland (VG) region
where the second largest city of Sweden, Gothenburg, is located.

We use MATSim to simulate realistic daily activity plans of the agents. MATSim is an agent-based framework that provides a
microscopic description of the travel demand (W. Axhausen et al., 2016). MATSim simulates agents’ movement trajectories given
their activity plans by optimizing agents’ utility scores, which considers activity participation as positive while being late or stuck
in traffic negative. We feed the agents’ daily activity plans and the road network into MATSim for replanning until they converge
on a set of optimal activity plans for all agents. Next, we extract the mobility trajectories of individual agents from the MATSim
simulation.

The BEV simulation is implemented on the individual agents’ travel trajectories considering overnight charger access, today’s
car fleet composition in Sweden, road network, and BEV charging & discharging dynamics. The parking times are the charging
opportunities, and we do not consider rerouting to search for charging points. If an agent cannot visit all the planned places, despite
charging the BEV the whole time it is parked, we define this situation as a failure. A failure can be caused by long travel distances
and short parking time windows.

In the BEV simulation, we simulate three charging strategies: (1) Liquid-fuel strategy, (2) Plan-ahead strategy, and (3) Event-
triggered strategy. These charging strategies have varying SOC thresholds and conditions to start charging when the agents’ BEVs
are parked for more than 10 min. On the supply side, we provide three types of charging points according to the length of their
parking and the SOC of their BEVs: (1) fast charger (50 kW), (2) intermediate charger (22 kW), and (3) slow charger (11 kW). We
conduct extensive sensitivity analysis (see Appendix B) and summarize the results on charging demand overnight, at work, and in
public spaces.

2.1. Simulating mobility trajectories

The two key inputs for MATSim to simulate the synthetic population’s mobility trajectories are the car drivers with their daily
activity plans, and the road network (detailed below). The configuration follows the benchmark scenario of MATSim 13.02 with
minor modifications. The replanning strategy is a combination of BestScore (60%), TimeAllocationMutator (30%), and ReRoute

2 https://github.com/matsim-org/matsim-libs/releases/tag/13.0
3
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Fig. 2. Simulation inputs: agents, road network, and BEVs. (a) Car users’ home distribution. (b) The road network in VG. (c) The entire road network. (d)
Charging time as a function of SOC by battery size and power. For slow charging overnight (11 kW), we assume SOC will reach 1 before the start of the next
day. (e) Assumed distribution (%) of BEV types by battery size and by income group. Yearly income is measured in thousand (K) Swedish krona (1K Swedish
kronor is about 92 Euro).

(10%), where the percentage in the brackets indicates the share of agents who adopt these strategies.3 After 200 iterations, we
see utility scores stabilize for all agents. We take the output of the 200th iteration as the trajectories for the next module, BEV
simulation. Detailed input descriptions of this module are the following.

2.1.1. Synthetic population and their activity plans
In the 1.7 million residents in VG, we use 284,000 agents who are car users. They account for 35% of all the car users and

18% of the total population (Fig. 2a). They are proportionately sampled by the demographic statistics areas (DeSO zones) (Statistik-
myndigheten SCB, 2022). Each agent has a set of socioeconomic attributes such as age, gender, income level, employment status,
dwelling type, etc., together with a daily activity plan covering four activities: home (H), work (W), school (S), and other (O). Most
of these car users live in detached houses (62.4%) and the rest in apartments (37.6%). More car users live in suburban areas than
in Gothenburg city center (Fig. 2a). Their mobility patterns in the simulation day are summarized in Appendix A.

2.1.2. Road network with slope
A road network with slope is prepared for a more accurate estimation of BEV energy consumption than assuming an average

energy efficiency for BEV discharging. We download the road network from GEOFABRIK (Geofabrik GmbH and OpenStreetMap
Contributors, 2022) and extract the following road segments using osmosis (osmosis, 2022): all the road segments within the VG
area (Fig. 2b) and all the main road segments for the rest of Sweden (Fig. 2c). The main road segments cover motorway, trunk road,
and primary, secondary, and tertiary roads.

After getting the road network, we compute the road slope for the BEV simulation. For those road links longer than 500 m, we
break them down into multiple connected links to ensure all processed road links are no longer than 500 m. We get the elevation
of each road link’s start and end points using the European Digital Elevation Model (DEM) data (Copernicus Programme, 2022).
From the elevation information, we calculate the average slope of each road link.

3 BestScore keeps the plan scoring the highest from the previous iteration. TimeAllocationMutator shifts activity end times randomly within a range. ReRoute
makes agents reroute their current route. More details can be found in W. Axhausen et al. (2016).
4
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Fig. 3. Simulating three charging strategies and their SOCs. (a) Charging strategies. (b) An example of SOC time history of a selected agent. The light blue
curves indicate no daytime charging. The green curve shows adopting the Plan-ahead strategy, which leads to charging during the first parking event. (c) Initial
SOCs for the three charging strategies. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2.2. BEV simulation

The BEV simulation concerns charging infrastructure technology, battery energy density, and BEV energy consumption. We
combine the current status and near-future projections in designing a future scenario of 100% BEV adoption. From this setup, one
can also test different technology development scenarios.

The BEV simulation assumes the agents drive BEVs to finish the activities on the simulation day following the trajectories from
the MATSim simulation. The inputs are BEV fleet and discharging & charging dynamics, charging strategies, and charging access
and initial SOC. Detailed input descriptions of this module are the following.

2.2.1. BEV fleet and discharging & charging dynamics
Using the data from a previous study on future EV charging infrastructure scenarios in Sweden (Márquez-Fernández et al., 2021),

we consider a BEV fleet composed of three sizes of BEVs, B- (12%), C- (50%), and D-segment (38%) reflecting today’s composition,
and they have battery sizes of 40, 60, and 100 kWh, respectively. Another study on charging strategies for urban private vehicles
in Berlin shows a similar selection of battery sizes (Jahn et al., 2020). For discharging, each BEV segment has a lookup table of
energy efficiency (kWh/km) as a function of speed (m/s) and road slope (%). For charging, the power delivered by the charge point
is limited by SOC, i.e., the higher the SOC, the slower the charging (Fig. 2d). The detailed characteristics of these vehicle segments,
their simulated energy efficiency maps, and SOC-dependent charging profile were generously provided by Márquez-Fernández et al.
(2021).

BEVs are assigned to the agents depending on their income levels. The higher the income, the larger the assigned BEV battery
sizes. The proportions of BEV assigning are randomized and heuristically determined, as illustrated in Fig. 2e.

2.2.2. Charging strategies
We abstract three charging strategies (Sprei and Kempton, 2022):

• Liquid-fuel strategy: Wait until the gauge shows low, then refill.
• Plan-ahead strategy: Plan ahead for when charging is needed. For example, when parking, think ahead to the next trip and

check if BEV has enough charge for it. If not, plug in.
• Event-triggered charging: Plug in to charge whenever parking at a specific location, e.g., workplace, meal stops, sometimes

without considering whether stop duration only allows a partial refill (opportunistic partial charging).

These three strategies are translated into rules for simulating the agents’ charging decisions, as shown in Fig. 3a. Once an agent
decides to charge, if parking time allows, the battery will be fully charged by an intermediate charger or 80% charged by a fast
charger. As an example of BEV simulation outputs, Fig. 3b shows that if this agent does not use daytime charging, they will run out
of battery before going to the last activity location (light blue curves). If adopting the Plan-ahead strategy, this agent will charge
the battery during the first parking event (green curve) so that they are able to complete the activities of the simulation day.

2.2.3. Charging access and initial SOCs
Most public and workplace charging stations today can deliver 11 kW–22 kW (Mathieu et al., 2020). Newly installed home

chargers for Tesla have a power of around 11 kW, as do most recent home chargers in Sweden and Germany, some even 22 kW.
The increasing BEV adoption also comes with the expectation that the power output of workplaces and public chargers will increase
in 2030 (Mathieu et al., 2020). Therefore, in this study, the charging options are (1) slow charger (11 kW) for overnight charging
at a detached house or a non-home residential parking spot nearby an apartment, (2) intermediate charger (22 kW) for charging at
5
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Table 1
Charging access.

Dwelling type Overnight charging Daytime charging

Home charger Non-home residential charger

Detached house Yes No Conditional
b

Apartment No Conditionala

aIf an agent fails to finish driving or ends up with SOC below 0.2.
bDepending on charging strategy, parking duration, and SOC. If an agent decides to charge the
car given its charging strategy, fast chargers (50 kW) for daytime charging are provided when
the parking time is below 30 min and SOC below 0.8, otherwise intermediate chargers (22 kW)
are provided.

orkplaces and other places such as shopping malls, etc., where agents are engaged in other non-school or work activities, and (3)
ast chargers (50 kW) for daytime charging depending on parking time, charging strategy, and SOC. Specifically, if an agent decides
o charge the car given its charging strategy, fast chargers (50 kW) for daytime charging are provided when the parking time is
elow 30 min and SOC below 0.8, otherwise intermediate chargers (22 kW) are provided.

We initialize the BEV fleet SOCs according to whether the agents live in a detached house or not. For simplification, an agent
iving in a detached house always starts the simulation day with a fully-charged battery. This may lead to an overestimation
f the overnight charging demand because people may only need to charge BEVs once every three days, according to a simple
stimation (Wang et al., 2019). The SOCs of the rest of the agents are randomly drawn from a skewed normal distribution with
kewness of −4 (Azzalini and Capitanio, 1999), ranging between 0.2 and 0.9. An arbitrary initial SOC distribution biases the

simulation results (Hipolito et al., 2022). Therefore, we run five consecutive simulation days with the same planned activities,
considering overnight charging and different daytime charging strategies. If an agent lives in an apartment and fails to finish driving
or ends up with SOC below 0.2, the agent is assigned a non-home residential charger to charge the BEV overnight so that the next
day will start with a fully charged battery.

Different charging strategies will lead to varying distributions of initial SOCs. For example, the Event-triggered strategy will
eep SOC at a high level at the end of the simulation day and therefore a high SOC at the start of the following simulation day.
fter a continuous simulation spanning multiple activity days, the initial SOCs patterns stabilize and we use the fifth day’s results

or further analysis. In summary, we simulate charging access shown in Table 1. The three charging strategies have varying initial
OCs (Fig. 3c).

.3. Quantifying charging demand

Based on the output of the BEV simulation module, we aggregate charging demand from two perspectives: individual charging
atterns and spatiotemporal patterns of charging needs. We then compare the distribution of simulated charging points with today’s
harging infrastructure.

.3.1. Individual charging patterns
We first summarize the charging demand of individual BEV users by two characteristics: whether they do daytime charging and

inish all the planned activities without draining out the battery. Next, for those who use charging points at workplaces or other
laces, we summarize their charging behaviors in terms of charging duration, the share of charging duration of parking time, and
he total energy from charging points to their BEVs.

.3.2. Spatiotemporal patterns of charging needs
Charging points are provided when the agents want to charge their BEVs. Therefore, the required number of charging points in

ach DeSO zone is calculated as the maximum number of plugged-in BEVs in this area at each minute during the simulation day.
We quantify required charging points at workplaces, other places, and near apartments (non-home residential chargers) using

ive measures: (1) the total number of charging points, (2) the number of cars served by a charge point (the agent number divided
y the number of wanted charging points), (3) the number of charging points in each DeSO zone, (4) the number of charging points
er km2, and (5) hourly power demand.

.3.3. Comparison with today’s infrastructure
We scale up our results from the simulation of 35% VG car users to the demand of all the VG car users. Here, we focus on

he spatial disparity of daytime charging points, i.e., the value difference in the number of charging points per zone between the
imulated and today’s infrastructure (2022). A negative value difference indicates a region needs to build more charging points to
upport BEV users in VG. At the same time, a positive value suggests that today’s infrastructure is sufficient for 100% BEV adoption
or VG’s private car owners.

Sweden currently has 14,339 public charging points (Power Circle AB, 2022). However, there are no official data on private
harger deployment (Xylia and Joshi, 2022) and the statistics of charging points deviate between different data sources. Therefore,
he comparison indicates the magnitude of the charging point deficit toward a 100% BEV adoption future and its spatial patterns.
owever, the absolute numbers of charging point deficits in analysis zones are less reliable due to the discrepancy between available

ources. We got the data on today’s infrastructure in Sweden from a free internet service that helps EV drivers find charging
tations (CHARGEX AB, 2022).
6
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Table 2
Share of agents who use daytime chargers and failure rate. HC = home charger at a detached
house.

Charging strategy Daytime charger usage (%) Failurea rate (%)

w/o HC w/ HC w/o HC w/ HC

1 - Liquid-fuel 3.59 0.35 0.96 1.17
2 - Plan-ahead 7.36 1.91 0.68 0.37
3 - Event-triggered 18.2 22.4 0.57 0.37

aAn agent is not able to finish all the activities with the assigned BEV and initial SOC.

Fig. 4. Charging demand of individual agents. (a) Charging duration in minutes per agent per day. (b) Charging duration as the share of parking time per
agent-day. Error bars indicate the range between the 25th-percentile and the 75th-percentile. (c) Energy flow from chargers to BEVs.

3. Results

3.1. Individual charging patterns

The share of agents who access daytime charging points is small, especially for those with access to a home charger (Table 2).
Compared with the Liquid-fuel strategy, the Plan-ahead strategy significantly reduces the number of agents who fail to finish all
their activities. The Event-triggered strategy further reduces the failure rate, but only slightly, compared to the Plan-ahead strategy;
however, it results in considerably more charging demand for daytime charging.

Figs. 4a–b summarize the total charging duration for daytime charging. Charging times are 30–125 min for intermediate charging
and 3–30 min for fast charging (Fig. 4a). For the Event-triggered strategy, the charging time is reduced due to more agents with
higher SOC choosing to charge their cars. Living in an apartment without a home charger induces ∼15 min longer charging time.
Fig. 4b suggests that charging takes around 30% of the total parking time. Fast charging only happens when the parking time is
below 30 min, but the share is rather small, especially for those with home chargers.

Figs. 4c illustrates the total energy consumption for daytime and overnight charging. Overnight charging consumes a larger
amount of energy than daytime charging, especially for those with home chargers, because they always top up to 100% charged.
Agents without home chargers get more energy during the day than those with home chargers, especially for Strategies 1 and 2. But
the relationship is reversed for overnight charging because only a small number of apartment dwellers have access to a non-home
residential charger. The Event-triggered strategy reduces the gap between the two types of dwellers and relies more on daytime
charging than overnight charging.

3.2. Spatiotemporal patterns of charging needs

Table 3 summarizes the charging points required by the 284,000 car users according to the charger type, occasion, and charging
strategy. The number of daytime charging points increases in the order of Strategies 1, 2, and 3, and the reverse for overnight
charging. The number of charging points at workplaces is 54.6% of the number at other places for Strategy 1, 56.8% and 65.2%
for Strategies 2 and 3, respectively. Regardless of the strategy, there is a smaller charging demand in terms of energy at workplaces
than at other places. This is because Other activity happens more frequently than Work (Table A.1). When BEV users adopt a more
conservative (and frequent) charging like Strategies 2 and 3, the demand gap between the two occasions decreases. Compared with
intermediate charging points, the demand for fast charging points is minimal, especially at workplaces.
7



Transportation Research Part D 116 (2023) 103645Y. Liao et al.
Table 3
Number of charging points for daytime charging and overnight charging (non-home residential). Inter. = intermediate.

Charging strategy Daytime charging point Overnight charging
point (non-home residential)

Occasion Inter. Fast # cars
per inter.

# cars
per fast

Slow # cars
per slow

1 - Liquid-fuel
Other 3,471 509
Work 1,895 8
Total 5,366 517 54 561 11,290 26

2 - Plan-ahead
Other 8,092 787
Work 4,596 30
Total 12,688 817 23 355 2,101 138

3 - Event-triggered
Other 14,542 1,250
Work 9,475 70
Total 24,017 1,320 12 220 1,962 148

Fig. 5. Spatial distributions of charging points for daytime charging by charging strategy.

Fig. 5 shows the spatiotemporal distributions of daytime charging points. Workplace charging is concentrated in central
Gothenburg, while charging points for Other activities are more spread out in southern Sweden.

From a density perspective (Fig. 6), all the charging strategies have many zones where only 1 or 2 charging points are needed. But
for most zones, different charging strategies result in vastly different charging point densities seen from median and 50th-percentile
and 95th-percentile values.

The temporal patterns of power demand shown in Fig. 7 suggest that the Plan-ahead strategy has a more concentrated power
demand during the daytime than the Liquid-fuel strategy. The Event-triggered strategy creates ∼60% more daytime power demand
in MW than the Plan-ahead strategy. The three charging strategies all peak at around 8 AM but the demand for the Event-triggered
strategy remains high throughout the day.

3.3. Comparison with today’s infrastructure

Fig. 8 shows the difference between the simulated results and today’s infrastructure. The number of zones with sufficient charging
points for VG BEV users decreases in the order of Strategies 1, 2, and 3 (smaller number of blue lines). From left to right, the gap
between this study’s simulated required charging points and today’s infrastructure becomes greater. If all agents adopt the Liquid-fuel
strategy, today’s charging points at central Gothenburg are sufficient for 100% BEV adoption in VG. Some surrounding cities along
the coast already have enough to support all VG car users (100% BEV), despite today, only 118,400 passenger cars in Sweden are
BEVs (2.2%) (Xylia and Joshi, 2022). When agents are more dependent on charging at public places and work (Strategies 2–3),
more DeSO zones need to install additional charging points, not only in densely populated areas such as Gothenburg but also in its
surrounding urban areas.

4. Discussion

This study evaluates the charging infrastructure needs from the user’s perspective in a future scenario of 100% BEV adoption. We
take a synthetic population of Sweden for an agent-based simulation exploring the charging demand overnight and during daytime,
corresponding to different charging strategies and dwelling types. The results describe individual charging patterns at a high spatial
8
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Fig. 6. Daytime charging point density by charging strategy and occasion (work or other).

Fig. 7. Hourly power demand of all daytime charging points by charging strategy.

and temporal granularity enabling detailed and local-level explorations. We show how many intermediate and fast charging points
are required when and where at work, other public places, or near home, and how the infrastructure demand varies between the
three charging strategies, Liquid-fuel, Plan-ahead, and Event-triggered, and two types of dwellings, detached houses, and apartments.

The chicken-and-egg dilemma in charging infrastructure planning leads to a paradox between the perceived lack of infrastructure
for a shift to BEVs and the analyses that suggest that adequate charging infrastructure is required to support BEV driving. By
integrating realistic charging strategies and access to a home charger (w/ and w/o), our study contributes unique insights into this
paradox of EV charging infrastructure by quantifying the charging infrastructure that BEV users want instead of need.

4.1. Feasibility of charging strategies for BEV driving

In the literature, charging strategies often refer to how charging is optimally managed to maximize the profitability or power
stability (Sachan et al., 2020). In this study, we examine from BEV users’ perspective by abstracting the patterns of how they charge
their cars in daily life, while acknowledging the simplicity of the rules translated in Section 2.2.2. In reality, people are more likely
to adopt a mix of these three strategies depending on their general preferences, timings, and occasions. However, our results provide
a clear distinction between the simulated charging demand given different assumptions of charging behaviors.

The Liquid-fuel strategy, the predominant strategy assumed in the literature, is more sensible for those with fixed daily activities
or secured overnight charging access. However, the assumption that BEV users will adopt this strategy might lead to more problems
and less satisfaction with EVs, i.e., difficulties to adopt EVs (Sprei and Kempton, 2022). We see a much smaller share of agents with
home chargers who charged their BEVs during the daytime when adopting the Liquid-fuel strategy (0.35% vs. 3.59%, Table 2). In
9
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Fig. 8. Spatial disparity in charging points between simulated results and today’s infrastructure: difference in the number of charging points by DeSO zone.
Bottom line charts indicate the magnitude of charging points disparity where each line represents a DeSO zone.

contrast with the Liquid-fuel strategy, the Plan-ahead strategy seems more realistic and rational. It drastically reduces the failure
rate for those with a home charger at their detached houses (from 1.17% to 0.37%). A more aggressive charging strategy like
the Event-triggered one does not further reduce their failure rate. Despite being seemingly extreme, the Event-triggered strategy
resembles the behaviors of BEV users who do not have fixed overnight charging access. They rely on public charging as finding an
overnight charging point near their home maybe uncertain.

Regardless of charging strategy, 99% of BEV users can manage their weekdays by relying on charging during known parking
events, provided access to charging infrastructure. However, the three charging strategies result in different numbers of charging
points and how they are used. For today’s Sweden (2022), we have 23 cars per charge point and 210 cars per fast charger (Power
Circle AB, 2022). These numbers are close to our simulated results for the Plan-ahead and Event-triggered strategies (Table 3).
Assuming that BEV users adopt the Liquid-fuel strategy leads to an underestimation of charging demand, the Event-triggered
strategy results in a large number of charging points (Table 3) and shorter charging time (Fig. 4a–b), leading to potentially higher
infrastructure costs.

A major simplification of simulating charging behaviors in the current work is the lack of charging costs including electricity price
and parking fee. This simplification is made to separate the demand and supply sides providing a perspective on what BEV users
want, free of other constraints. The literature indicates that consumers can be price sensitive and modify their charging behaviors
accordingly (Yang et al., 2021). Chakraborty et al. (2019) show that plug-in electric vehicle drivers use workplace charging when
the electricity cost is higher at home, and more so when charging at work is free. In our study, due to more activities in public
places than work activities, there are more charging points wanted at Other occasions than at workplaces (Table 3). In reality, the
difference may be smaller due to a better charging price at workplaces.

The current results regarding the three simplified charging strategies can work as a starting point to further building other
scenarios, e.g., a more realistic representation of charging behaviors by integrating different supply-side pricing options and
seeing how the charging cost affects charging demand. With 100% BEV adoption, the grid will need to significantly expand in
capacity (Powell et al., 2022), and pricing can provide incentives to make BEV users adapt to more grid-friendly charging behavior.
10
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4.2. Role of charging access at work, public places, and near home

Overnight charging contributes more energy than daytime charging at work and other public places for an average weekday
Fig. 4). The relationship between these two sources of energy depends on dwellings. For all the detached house dwellers (62.4%)
f VG car users, overnight charging provides the energy of 1500–2600 MWh, about 1.5–54 times the energy supplied by daytime
hargers (48–985 MWh). For all the apartment dwellers (37.6%), this number is around 0.2–0.9 (150–460 vs. 511–996 MWh).
arly adopters have predominantly access to home chargers (Hardman et al., 2018) but the demand of those who do not have
ome chargers in a future scenario remains unclear. Our study shows a distinct difference in charging infrastructure needs and
harging demand between the two types of dwellers. Policymakers should be aware of such a difference to efficiently plan charging
nfrastructure for wider BEV adoption, especially to encourage those living in other types of housing than detached houses. The role
f overnight charging also depends on the charging strategies for daytime charging. The more aggressively batteries are topped up
uring daytime, the less dependence on overnight charging there is (Table 3).

This study also reveals the spatiotemporal distribution of the charging needs at work and other places desired by BEV users with
ifferent charging strategies. When adopting the Plan-ahead strategy, agents think about planned activities before the first parking
vent, leading to early charging (Fig. 7). On the other hand, the Liquid-fuel strategy prolongs the time between starting the day and
he first charging because people wait until batteries run low.

Compared with today’s infrastructure in the study area (Fig. 8), significantly more charging points are needed for 100% BEV
doption according to the Plan-ahead and the Event-triggered strategies. A previous study (Funke et al., 2019) suggests that ‘‘public
harging infrastructure as an alternative to home charging is only needed in some densely populated areas’’. However, our results
how that, first, not all future BEV users will have stable access to home charging, which leads to a distinct demand split between
vernight charging and daytime charging (mostly in public spaces). Second, to meet local BEV users’ charging demand, additional
1–220 charging points per zone can be needed in many cities and surrounding areas, in addition to a few densely populated areas.
ur synthetic population will be open source and available publicly. Others can, for example, use our work to look at the storage
apacity available for vehicle-to-grid systems (Hipolito et al., 2022) or other applications.

.3. Daytime charging demand and grid perspective

The overall daytime charging demand for 100% BEV adoption is high regardless of charging strategies. The peak demand in
othenburg is 250 MW (Svenska Kräfnät, 2022), ca. 750 MW in Västra Götaland, considering its population is three times that
f Gothenburg. Our results indicate that the peak demand of daytime charging corresponds to roughly 6%–33% of today’s grid
apacity. This is related to the simulation assumptions. First, we assume a charging point is placed when an agent wants to charge
he car. This is different from many previous studies, where the number of charging points is optimized according to various targets,
.g., minimized infrastructure cost. Based on this distinct simulation design of this work, the results highlight what BEV users want

instead of need. Second, the three charging strategies are abstracted and simplified from real-world behaviors. In reality, electricity
prices will affect BEV users’ charging decisions. Given these assumptions, this study provides a baseline from a charging behavior
point of view.

In general, charging infrastructure will affect the electricity grid. For example, a recent study suggests that the peak net electricity
demand would increase by 50% in full electrification in the US (Powell et al., 2022). The study also indicates that daytime charging
can be essential in reducing the load on the electric grid. Moreover, smart pricing incentives for demand shift and vehicle-to-grid
strategies will significantly reduce the grid impact (Barthel et al., 2021; Tuchnitz et al., 2021). The daytime power demand according
to different charging strategies given by the current study can contribute insights to designing good daytime charging experience
from a user’s perspective.

4.4. Limitations and future work

The first limitation is the lack of charging cost from the user’s and the infrastructure’s perspectives (as discussed in Section 4.1).
Future directions include having more realistic charging strategies integrating charging cost models and minimizing charging
infrastructure costs. The second limitation is the lack of feasibility constraints regarding land use and grid. We assume a charging
point can be installed where the agents park and decide to charge their BEVs. However, in reality, the feasibility of a charging point
placement is constrained by many factors such as zoning constraints, business models, etc. A more detailed depiction will better
guide planning practice. The third limitation concerns using today’s population and travel patterns for a future scenario. Our future
work will incorporate changes in the population, including sociodemographic and behavioral changes, e.g., the share of car users,
etc. We will in particularly consider interactions between driving and a shift to more sustainable modes of transport such as cycling
and public transit, thus further reducing the need for parking and charging stations. By varying assumptions of travel demand such
as trip distances, we could also explore the impacts of behavioral changes on charging travel demand in the future.

Moreover, we currently simulate an average weekday (Mon-Fri) and not an average day of the week (any day); thus, long-
distance driving is under-represented, and so is the need for fast-charging, particularly along travel corridors. This study reveals
that the need for fast charging to facilitate daily driving is small. One future direction would be to extrapolate one average weekday
11
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Table A.1
Activity statistics. Except for the share of activities, the rest of indicators are median values of
all car agents.

Activity Share (%) Frequency per day Duration per activity Duration per day

Home 57 2.2 7.1 15.1
Other 30 1.7 1.7 2.5
School 2 1.1 8.2 8.4
Work 11 1.1 8.7 8.9

Table A.2
Top 10 activity plans of car agents.

Activity sequence Share (%) Cumulative share (%)

H-O-H 26.9 26.9
H-W-H 23.4 50.4
H-O-H-O-H 7.5 57.8
H-O-O-H 7.1 64.9
H-S-H 6.2 71.1
H-O-O-O-H 5.9 77.0
H-W-O-H 3.8 80.8
H-W-H-O-H 2.9 83.7
H-W-O-W-H 2.0 85.6
H-O-O-H-O-H 1.9 87.5

Table A.3
Car trip statistics.

Indicator Travel time per trip (min) Travel distance per trip (km) Daily travel distance (km)

Median 17.6 11.0 32.9
5th percentile 3.0 1.4 4.1
95th percentile 145.7 71.1 189.4
Maximum 690.0 658.5 1140.2
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ppendix A. Mobility patterns of simulated car agents

We summarize the mobility patterns of the agents in the simulation day in two aspects: activities and car trips. Table A.1 shows
he share, frequency, and durations per day and per activity of all the involved car agents. More than half of the activities are
taying home, followed by Other, Work, and School.

Table A.2 shows the top 10 daily activity plans. Half of the agents have simple daily plans, H-O-H or H-W-H. Besides these
wo typical plans, the rest of the activity plans suggest that Other activities happen frequently, and Work often comes with some
econdary Other activities.

Fig. A.1 shows overall hourly activity participation (a) and activity duration when the BEVs are parked (b).
Table A.3 shows the statistics of all the simulated car trips regarding travel time and distance, and daily travel distance (also
12

isualized in Fig. A.2).
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Fig. A.1. Activity patterns. (a) Temporal profiles. (b) Distribution of parking duration for the activities reached by car.

Fig. A.2. Distribution of daily travel distance by car.

Appendix B. Sensitivity test results

The sensitivity test aims to reveal how the simulation results change corresponding to different SOC thresholds of the three
charging strategies and fast charging powers. We ran seven additional simulations using a SOC threshold of 0.3 for Strategies 1 and
2 and the fast charging power of 150 kW. There are ten scenarios (Table B.1), where the main body of the manuscript presents
scenarios No. 1–3, and the sensitivity test covers additional scenarios No. 4–10. We present the sensitivity test results in this section,
complementary to the manuscript’s main body.

B.1. Individual charging patterns

As an addition to Table 2, Table B.2 shows the sensitivity results of individual charging behaviors. Higher power for fast charging
does not affect the share of agents using daytime chargers and the agents’ failure rate. A higher SOC threshold of commencing
daytime charging induces greater charging demand and a slightly lower failure rate for those without a home charger.

Table B.3 summarizes the median values of individuals’ total daytime charging duration and charging time ratio and their
total energy consumption for daytime and overnight charging (in addition to Fig. 4). Higher fast charging power does not affect
intermediate charging due to its small share but reduces the number of fast charging points and the required fast charging time. A
greater SOC threshold leads to increased daytime charging and decreased overnight charging.
13
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Table B.1
Scenarios of charging strategies and fast charging powers.

No. of scenario Charging strategy (SOC threshold) Fast charging power (kW)

1 1 (0.2) 50
2 2 (0.2) 50
3 3 (0.9) 50
4 1 (0.2) 150
5 2 (0.2) 150
6 3 (0.9) 150
7 1 (0.3) 50
8 2 (0.3) 50
9 1 (0.3) 150
10 2 (0.3) 150

Table B.2
Daytime charger usage and failure rate. HC = home charger at a detached house.

Charging strategy
(SOC threshold)

Fast charging
power (kW)

Daytime charger
usage (%)

Failurea rate (%)

w/o HC w/ HC w/o HC w/ HC

1 (0.2) 50 3.59 0.35 0.96 1.17
1 (0.2) 150 3.60 0.35 0.94 1.17
1 (0.3) 50 6.70 0.63 0.80 0.99
1 (0.3) 150 6.66 0.63 0.79 0.98
2 (0.2) 50 7.36 1.91 0.68 0.37
2 (0.2) 150 7.29 1.91 0.67 0.37
2 (0.3) 50 8.17 2.53 0.60 0.37
2 (0.3) 150 8.05 2.53 0.60 0.37
3 (0.9) 50 18.21 22.44 0.57 0.37
3 (0.9) 150 18.23 22.44 0.57 0.37

aAn agent is not able to finish all the activities by the assigned BEV and initial SOC.

Table B.3
Charging demand of individual agents. HC = home charger at a detached house.

Charging strategy
(SOC threshold)

Fast charging
power (kW)

Fast charging
time (min)

Inter. charging
time (min)

Fast charging
time ratio

Inter. charging
time ratio

Total daytime
energy (MWh)

Total overnight
energy (MWh)

w/o w/ HC w/o w/ HC w/o w/ HC w/o w/ HC w/o w/ HC w/o w/ HC

1 (0.2) 50 19 18 116 105 7 11 30 37 511 48 458 2,512
1 (0.2) 150 16 14 116 105 6 7 30 37 514 48 459 2,512
1 (0.3) 50 19 20 108 101 10 10 30 33 901 82 335 2,478
1 (0.3) 150 15 15 108 101 8 8 30 33 906 83 332 2,477
2 (0.2) 50 18 12 109 85 21 34 31 31 996 189 165 2,372
2 (0.2) 150 13 8 109 85 16 29 31 31 991 189 163 2,371
2 (0.3) 50 17 11 102 80 22 34 29 29 999 231 160 2,329
2 (0.3) 150 12 7 102 80 16 28 29 29 991 231 159 2,329
3 (0.9) 50 5 5 41 42 24 14 12 12 843 985 158 1,575
3 (0.9) 150 2 2 41 42 10 11 12 12 845 986 156 1,574

B.2. Spatiotemporal patterns of charging

As an addition to Table 3, we show the sensitivity results of required charging points in Table B.4. Higher power for fast charging
ometimes leads to more fast charging points (SOC=0.2 for Strategies 1–2) but a reduced number of fast charging points in the other
cenarios. We see more fast charging points required for Strategies 1–2 when the agents decide to charge on a low battery (SOC=0.2)
ecause, in these scenarios, they are more likely to have short parking events with the battery SOC below 0.8, triggering the need
or fast chargers. On the other hand, when the agents have a more conservative charging strategy (SOC=0.3 for Strategies 1–2 or
vent-triggered strategy), we see a declined demand for fast charging. However, a higher fast charging power always goes with
slightly smaller number of intermediate charging points. A higher SOC threshold of commencing daytime charging means more

aytime charging points and fewer overnight charging points for apartment dwellers.

Fig. B.1 shows the temporal profile of daytime charging power demand of the ten scenarios. Higher fast charging power has
inimal impact because most wanted charging points are intermediate (Table B.4). A greater SOC threshold induces higher power
14
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Table B.4
Number of charging points by scenario. Inter. = intermediate.

Charging strategy
(SOC threshold)

Fast charging
power (kW)

Occasion Daytime charging Overnight charging

Inter. Fast # cars per inter. # cars per fast Slow # cars per slow

1 (0.2) 50
Other 3,471 509
Work 1,895 8
Total 5,366 517 54 561 11,290 26

1 (0.2) 150
Other 3,457 540
Work 1,855 8
Total 5,312 548 55 529 11,348 26

1 (0.3) 50
Other 5,352 754
Work 3,762 19
Total 9,114 773 32 375 5,051 57

1 (0.3) 150
Other 5,335 739
Work 3,757 14
Total 9,092 753 32 385 4,983 58

2 (0.2) 50
Other 8,092 787
Work 4,596 30
Total 12,688 817 23 355 2,101 138

2 (0.2) 150
Other 8,065 800
Work 4,516 32
Total 12,581 832 23 349 2,060 141

2 (0.3) 50
Other 8,807 899
Work 4,955 43
Total 13,762 942 21 308 2,001 145

2 (0.3) 150
Other 8,825 842
Work 4,842 37
Total 13,667 879 21 330 1,969 147

3 (0.9) 50
Other 14,542 1,250
Work 9,475 70
Total 24,017 1,320 12 220 1,962 148

3 (0.9) 150
Other 14,526 1,121
Work 9,465 68
Total 23,991 1,189 12 244 1,905 152

Fig. B.1. Hourly power demand for daytime charging by scenario.

B.3. Comparison with today’s infrastructure

Table B.5 suggests higher fast charging power only slightly reduces the demand for charging points. More conservative charging
(higher SOC threshold) requires more additional charging points for Strategy 1 Liquid-fuel but is not significantly different in Strategy
2 Plan-ahead.
15
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Table B.5
Statistics of charging point disparity between simulated results and today’s infrastructure by
scenario.

Charging strategy
(SOC threshold)

Fast charging
power (kW)

Zones needing additional
charging points (%)

# of additional
charging points

Max Median

1 (0.2) 50 93.6 65 6
1 (0.2) 150 93.4 59 6
1 (0.3) 50 96.9 156 9
1 (0.3) 150 97.2 151 9
2 (0.2) 50 97.9 199 11
2 (0.2) 150 98.0 185 11
2 (0.3) 50 98.3 193 11
2 (0.3) 150 98.5 216 11
3 (0.9) 50 99.4 379 20
3 (0.9) 150 99.4 376 20
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