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ABSTRACT

The transportation system is undergoing fundamental transform-
ations through emerging technologies. Some of these innovations
have the potential to contribute to the sustainable transformation of
the transportation system, such as electric vehicles (EVs) and shared
autonomous electric vehicles (SEAVs). Before enacting policies to
support these technologies or limit the use of undesirable ones,
decision-makers need to better understand these innovations and
the consequences of the policy to be implemented. This insight can
be provided with models that are capable of reflecting the dynamics
of new mobility, and interactions of travelers with each other and
the infrastructure. This thesis describes the development of the
Synthetic Swedish Mobility (SySMo) model that represents the travel
behavior of an advanced synthetic population of Sweden, using
an agent-based framework. The SySMo model provides a scaffold
to build decision support tools through which present and future
mobility scenarios can be analyzed and thus aid decision-makers in
formulating informed policies.

The SySMo model comprises a series of modules that utilize a
stochastic approach combined with Neural Networks, a machine
learning technique to generate a synthetic population and behavior-
ally realistic daily activity-travel schedules for each agent. The model
first generates a synthetic replica of the population characterized
by various socio-economic attributes using zone-level statistics and
the national travel survey as input data. Then, daily heterogeneous
activity patterns showing activity and trip features are assigned
to each individual in the population with a high spatio-temporal
resolution. To assess the SySMo model performance in each module,
in-sample evaluations (i.e., comparing the model outputs with input
data to measure the similarity of the results) and out-of-sample (i.e.,
comparing the model outputs with data never used in the model)
evaluations are performed. The current model offers a valuable
planning and visualization tool to illustrate mobility patterns of the
Swedish population. The methodology can also be broadly applied
to other regions with other relevant data and carefully calibrated
parameters.

Keywords: Agent-based modeling; Activity-based modeling; Activity
generation; Machine learning; Daily activity pattern
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CHAPTER 1

Introduction

The transportation system is undergoing fundamental transforma-
tions through emerging technologies. Increased urbanization, grow-
ing population, and the unsustainable nature of the current transport-
ation system make these changes necessary. Micromobility, electric
vehicles (EVs), and shared autonomous electric vehicles (SEAVs) are
some of the innovations that have the potential to contribute to the
sustainable transformation of the transportation system. Moreover,
emerging technologies that offer services to existing and new user
groups can also change people’s attitudes and behaviors concerning
mobility [1, 2]. When assessing these potential changes, decision-
makers should be supported by models that are capable of reflecting
the dynamics of new mobility, and interactions of travelers with each
other and the infrastructure. Considering that the urban population
will more than double its current size in the next 30 years [3], and
actions must be taken in the transport sector as soon as possible to
limit global warming [4], the need to better understand these changes
grows ever more urgent.

Agent-based modeling (ABM) framework equipped with activity-
based travel demand generation approach is one possible way to
serve this need. Researchers commonly use ABM to model travel
behavior, and most agree that the activity-based approach provides a
rigorous view of the transport model in creating travel demand. [5].
Rasouli and Timmermans [6] argues that the widespread use of big
data sources and the growth of computing power have enabled a faster
development of activity-based models toward integrating sub-models,
capturing the dependencies between trip chains, higher temporal and
spatial resolution, and behavioral realism.

The Synthetic Swedish Mobility (SySMo) model is a framework that
simulates transportation in large geographic regions based on the
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INTRODUCTION

agent-based modeling (ABM) approach. SySMo provides a scaffold
for building decision support tools through applying state-of-the-
art methods rooted in recent advances in transportation modeling
and computer science. The developed tool assists policymakers in
identifying key drivers of innovations and user trends and formulating
informed policies. The model first generates a synthetic replica of
the Swedish population with socio-economic attributes. After that,
the heterogeneous activity-travel schedules showing activity and trip
features are added to the synthetic population. So (a) it provides a
platform to create various future scenarios, and (b) it does not violate
any privacy issues since it is completely synthetic.

Scope and contributions

This licentiate thesis broadly deals with the modeling of human travel
behavior at a high spatio-temporal resolution to evaluate today’s and
future mobility using an agent-based modeling framework. The main
scope of the thesis is the development of a model that realistically
simulates Sweden’s transportation system and human transportation
behavior, focusing on the following question:

• How can we generate a synthetic population that is a statistically
accurate representation of the Swedish population with certain
attributes, to use in ABM?

• How can we model the activity-travel behaviors of individuals
in the developed synthetic population?

• How can we maintain heterogeneity, a fundamental feature of
human activity behavior, in the population?

• How can we incorporate state-of-art methods in computer sci-
ence into the modeling process to increase the realism of the
simulation?

In order to simulate human travel behavior, the developed model
first generates a complete synthetic population with the activity-travel
pattern for Sweden using the current data and data structures. Al-
though some studies focus on a small region or a particular mobility
behavior such as long-distance travel Canella et al. [7] and Márquez-
Fernández et al. [8], a synthetic population replicating the entire
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Swedish population does not exist in the current literature. The model
address this gap. Furthermore, the proposed methodology employs
a novel approach that utilizes the advantages of machine learning
techniques. Neural networks, a machine learning technique, cap-
ture the correlations between individuals’ attributes and their activity
sequences with high predictive ability in complex data sets. Paper
A explains the details of the novel methodology that generates the
synthetic population with mobility patterns.

The proposed methodology generates heterogeneous daily activ-
ity schedules showing activity type, start-end time, duration, and
sequence for the Swedish synthetic population and creates realistic
daily plans of the individual mobility. Traditionally, disaggregated
transportation models provide homogeneous daily activity patterns
within the sub-population. Homogeneous activity schedules may
be a reasonable simplification for many applications, but will be in-
adequate to assess the effects of policy efforts linked to significant
behavioral changes. Paper B describes the methodology producing
heterogeneous activity patterns in a synthetic population.

Disposition of this thesis

The thesis consists of four chapters followed by the papers; "The Syn-
thetic Sweden Mobility (SySMo) Model Documentation" and "The
Heterogeneous Travel Activity of a Synthetic Population". It is organ-
ized as follows: Chapter 2 begins with introducing key concepts in the
transportation field and the existing transport modeling approaches.
Chapter 3 provides a brief summary of the appended papers with
the main results. Chapter 4 ends with a general reflection upon my
research and future directions for my research.
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CHAPTER 2

Background

This chapter presents a brief overview of transport modeling tools
with a focus on the agent-based modeling approach. To provide a
broader perspective, we start by describing the fundamental con-
cepts of transportation and transportation modeling. The second
section introduces the agent-based transport modeling approach and
its components; population synthesis, travel demand generation, and
simulation models.

2.1 Transportation modelling

Transportation models are commonly used to explore a wide variety of
questions concerning human mobility behavior within the transport-
ation system. Models are established to analyze the entire transporta-
tion system or specific components and produce quantitative outputs
from the analysis, such as changes in the number of passengers in a
public transportation system or peak hours on a road network. Be-
fore discussing transportation models and modeling approaches, it
is worth outlining what transportation is. According to Black (2004),
transportation can be defined as:

“Transportation is concerned with the movement of goods
and people between different locations and systems used
for this movement. Included in the former would be the
journey to work, trade flows between nations, commodity
flows within a single nation, passenger flows by various
modes, and so forth, and those factors that affect these
flows. In general, movement within a single industrial
firm or building, or the migration of population, is not
included in this area.” [p13, 9]
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BACKGROUND

Cascetta [10] defines a transportation system as a set of interacting
or interrelated elements working together that generate the travel de-
mand in a particular area and produce the supply of transport services
to meet the travel demand. While the demand for transportation is
determined by the main factors varying by time and geographical
areas, such as demographics, economic activities, transport options
and their service prices and quality, and land use [11], the supply of
transportation is determined by users’ demand for transport as well
as the technical aspects of physical transport supply and the given
decisions regarding the presentation of the supply. To make informed
transportation policies, decision-makers need insight with predic-
tions over the transportation system. Transport models serve this
purpose; more specifically, demand models are used to predict the
use of transport services today or alternative future scenarios.

Transportation models reproduce an abstract copy of the trans-
port system as a whole or a particular subsystem using mathematical
methods based on specific theories. [12]. To date, numerous transport
models have emerged to make inferences about the transportation
system. The first operational model developed dates back to the 1950s
and was used to analyze transportation-related investments in the
USA [13, 14]. Transportation models have shown significant develop-
ment over time from smaller models reflecting car mode only in the
peak hour to more advanced models covering multimodal transport
modes for 24 hours using the disaggregated modeling approaches
[15]. Along with the development in modeling techniques over time,
the application of the outputs produced by the models has been di-
versified. For example, while models were mainly used for making
investment plans, they have also begun to use them in various areas
such as policy-making for demand management [16], environmental
pollution measurement [17], or calculating energy needs [8, 18].

2.1.1 Modelling of travel demand

This section discusses the commonly used approaches in travel de-
mand models. To design and evaluate transportation systems, it is
crucial to predict the travel demand and its variation in space and
time. Travel demand models typically consist of a combination of sub-
models, such as mode choice models or population flow prediction
models. These submodels are used to forecast various aspects of the
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trips. Cascetta [10] formulates the travel demand model organized
as flows between two points or regions as a function of population’s
socio-economic characteristics and transport infrastructures features,
according to the given travel characteristics such as travel purpose or
travel mode. That is;

Do ,d (K1, K2, ...Kn ) = f (S E , T ,β ) (2.1)

Here, the travel demand flow from origin o to destination d with Kn

characteristics is denoted as a function. S E shows the socio-economic
variables of the decision-makers in the transportation system, and T ,
the level-of-service attributes of the transportation supply system. β
specifies the model parameters regarding the travel flow between o ,
and d . Depending on the model adopted to explain the travel flow,
the parameters to be used differ (see more in Chapter 8 in the book
[10]).

Aggregate and Disaggregate Modelling

Transportation models are designed either to represent the travel be-
havior of each individual in a population separately or to represent
the population as a whole. Depending on the representation, they are
called aggregated or disaggregated models. The aggregated models
estimate travel behavior between two spatial regions, such as muni-
cipalities or zone defined by dividing the city into smaller areas [19].
The disaggregated models simulates the travel behaviors of a single
decision-maker (an individual) or a group of decision-makers having
similar characteristics (a family) [10]. The aggregation level of the
model is defined depending on various factors such as the modeling
objectives and the data structure, the devoted time, and the domain
knowledge. The disaggregated model results may need to be presen-
ted in an aggregated way to be helpful in planning and policy-making
processes. While the aggregation process seems relatively easier to
get the flows by combining individuals’ travel, disaggregating flows
requires more rigorous work [19]. A comprehensive description of
aggregated models can be found in the books by Dios Ortúzar and
Willumsen [12] and Daskin [20].
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Modelling approaches

In the literature, there are two common methods to model people’s
travel demands, trip-based and activity-based modeling approaches.
The trip-based modeling approach is the first to emerge technique
and calculates travel demand using trips as the unit of analysis. The
early applications assume trips occur independently of previous and
subsequent trips and forecast the travel demand between zones. A
few studies have adopted a tour-based approach taking into account
other trips within the tour by developing the trip-based applications
[21–23]. In the tour-based modeling approach, the unit of analysis
is tours that are defined as the trips from home to one or more loc-
ations and then back home [24]. There are also a limited number of
disaggregated trip-based modeling studies that independently estim-
ate each individual’s travel [25]. Although the trip-based modeling
approach has progressed over time, it lacks a valid explanation of the
underlying causes of travel behavior.

The activity-based travel demand models adopt a holistic approach
that considers travel demand in connection with individuals’ activity
patterns. This modeling approach aims to jointly deduce the activity
schedules of individuals and the travels between the activities for a
specific time period (usually one day) [26, 27]. With this concept, the
inadequacy of trip-based modeling in reflecting behavioral realism is
overcome by the activity-based modeling approach that presents the
underlying reason for travel.

The conceptual framework of activity-based modeling consists of
two key ideas. First, the travel demand originates from participating
in activities and is a derived need [28]. Travel is only undertaken when
the utility to be gained from participating in the activities exceeds
the disutility caused by the trip. People mostly do not travel for the
sake of travel with the possible exceptions such as travel for tourism .
Second is the space-time prism concept imposing the temporal and
spatial constraints that decision-makers face participating in spatially
distributed opportunities [29].

To provide a better understanding of travel behavior and explore
different aspects of activity-based modeling, many studies have been
conducted. Pas [30], and Hanson [31] investigate the correlation
between activity-travel patterns and socioeconomic attributes such
as age, gender, and employment status. Kitamura [32] identifies the
interdependence of activity locations within the activity sequence.
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Golob and McNally [33], and Pooley et al. [34] deal with interactions
between household members and their activity patterns. Here, we
cover only the principal ones (see more in the paper [5]). The differ-
ent methodologies in the application of the activity-based approach
are presented in the section about the activity-based travel demand
modeling in section 2.2.2.

2.1.2 Four-step transportation model

The four-step transportation model (FSM) is a traditional trip-based
modelling approach that has been widely used in the transportation
modeling field [12, 35]. These models are a primary tool for evaluating
large-scale infrastructure projects. It generates aggregated travel flows
by the defined travel characteristics between regions in a certain time
period. Most FSMs are developed to simulate peak hours or an average
day. The overall framework of the FSM contains four successive, and
independent steps: trip generation, trip distribution, mode choice,
and traffic assignment. The steps can be defined as:

• Trip generation: The first step predicts the number of trips
produced (started) and attracted (end) in each zone. Using
zone level statistics, the production and attraction numbers are
modeled independently at an aggregated level. Trip production
is deduced by using variables such as population, number of
households, income level, number of cars, and residential dens-
ity. Trip attraction is calculated by using variables such as office
space, number of retail buildings, number of employees, and
student capacity.

• Trip distribution: The objective of the second step is to match
trip starts and ends. The best-known technique to calculate
travel flow between regions is gravity models. It uses a func-
tion that distributes the number of trips between two locations
inversely proportional to their distance. This step gives the
origin-destination (OD) matrices.

• Mode choice: The total trip numbers between zones are dis-
tributed among the transportation modes in this step. Discrete
choice models, such as the nested logit model, are often used
to deduce modal split. This step produces mode-specific OD
matrices from the matrices produced in the previous step.

9



BACKGROUND

• Trip assignment: The last step considers the assignment of trips
to a transport network such as road network or public transport
network to simulate travel flow. It produces outcomes regarding
aggregated travel behavior of the population and the network’s
performance.

FSMs have been heavily criticized for inadequately presenting hu-
man travel behavior, although widely used in modeling [25, 36]. The
main criticism is that FSM adopting a trip-based approach, lacks be-
havioral foundations associated with the creation of travel demand
[37]. Furthermore, in FSM, spatial and temporal inter-dependencies
between trips in the same trip chain are also disregarded since each
trip is independently predicted [35]. Another shortcoming is that FSM
inadequatly reflects the inter-dependencies of the different character-
istics of an individual’s travel such as time, mode, and location. The be-
havioral inadequacies of traditional FSM with an aggregated modeling
approach makes it less sensitive to evaluate complex transportation
policies related to specific times of the day or specific travel behaviors.
For instance, most FSM is not capable of predicting responses to travel
demand management (TDM) policies such as strategies to increase
car occupancy [38]. FSM is better suited for infrastructure measures
than behavioral measures.

2.2 Agent-based transport modeling

This section will explain the use of agent-based modeling to model
the transportation system. Agent-based modeling (ABM) is a general
framework that models a system by dividing it into individual actors
interacting with each other and the environment according to their
characteristics, based on predefined rules [39, 40]. After the 2000s,
this approach started to be used frequently in modeling activity-travel
behavior [5], as well as in other fields such as telecommunication
technologies [41] power markets [42], and financial systems [43]. The
agent-based structure with a disaggregated modeling approach in
which each actor and their relationships are modeled separately, has
made ABMs a valuable tool in modeling transportation systems.

To model a transportation system with an ABM framework, one
first needs to generate the agents, which are the system’s main com-
ponents. The agents, a synthetic representation of individuals in the
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population, are created with various attributes that affect their inter-
actions with other agents and the environment. The behavior rules
set the limits of the agents’ actions. The agents act by their attributes
and the rules in the given environment. Most agent-based transport
models build these components by following the workflow compris-
ing population synthesis, travel demand generation, and execution
of agents’ daily plans. Activity-based modeling, where transportation
demand is generated assuming people are traveling to participate in
activities, fits well with agent-based modeling [44]. Activity-based
modeling is one of the most commonly used methods to generate
travel demand for agents in ABMs

There are three main steps of agent-based modeling, shown in Fig-
ure 2.1:

• The population synthesis module creates the population in the
modeled area with certain attributes.

• The activity generation module creates an activity-travel sched-
ule to each agent in the population.

• The multi-agent travel simulation module executes the assigned
schedules to agents in the transport network.

Population 

Synthesis

Travel Demand

Generation
  Simulation

Synthetic population with activity-travel pattern

Figure 2.1: An overview of Agent-based transportation model workflow.

2.2.1 Population synthesis

Population synthesis generates a statistically representative popula-
tion with their characteristics living in a particular geographical area.
Any agent-based transportation models require an initial synthetic

11
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population being the fundamental input. Rich [45] argues that the
population synthesis step needs to create a representative picture
of the people in a given base year and area, be adequately detailed
concerning socioeconomic variables to meet the requirements of the
transportation model, and identify individuals and their relationships.
For modeling transportation, the agent and their relations usually
represent individual people grouped by households [46]. Some syn-
thesis methods are dynamic which also deal with the generation of the
projection of the population for the future using fertility and mortality
rates [47]. However, in this thesis, we will only consider the generation
of the people with static methods in a base year.

The population synthesis methods have two categories, reweight-
ing and synthetic reconstruction [48]. The reweighting methods aim
to reproduce the population using various techniques that assign
weights to micro-data obtained from a national survey. Different ways
have been developed under this category, such as combinatorial op-
timization or generalized regression. The second category, synthetic
reconstruction, generally refers to the iterative proportional fitting
(IPF) technique and has widespread usage in the transportation mod-
eling field (see, e.g., Smith et al. [49], Frick [50], Arentze, Timmermans
and Hofman [51] and Guo and Bhat [52]).

The IPF technique makes a reference sample consistent with known
statistics called marginals or control totals. A reference sample is cre-
ated by using an initial frequency cross-table of all relevant attributes.
Let x = (x1, x2, x3) denote attributes of agents in a population and let
N (z , x ) denote the target values for attribute x in zone z . To estimate
n (z , x1, x2, x3), ∀z , x1, x2, x3 (i.e., the number of agents belonging to
every combination of zone z , attribute 1 x1, attribute 2 x2, attribute 3
x3), IPF is used with the known target values N (x1, x2) and N (x1, x3).
In particular, the following sequence of update rules is iterated until a
desired level of convergence is reached.

∀z , x1, x2, x3

n (z , x1, x2, x3)←
N (x1, x2)
∑

x1′
x2′

n (zd , x1′ , x2′ , x3)
n (z , x1, x2, x3) (2.2)

n (z , x1, x2, x3)←
N (x1, x3)
∑

x1′
x3′

n (zd , x1′ , x2, x3′ )
n (z , x1, x2, x3) (2.3)

12
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Here, the initialization value of n (z , x1, x2, x3) can be deduced by
dividing the total number of the population by the number of com-
binations of the attribute set. Equation 2.2 and 2.3 drive the numbers
obtained in an iteration toward the target numbers of (x1, x2, x3) at the
zone. This operation is repeated until the expected convergence level
is reached. IPF is a suitable technique for both estimation of values
and maintaining the known correlation structures between attributes.

2.2.2 Activity based travel demand modelling

Generating the daily travel demand for each individual is a crucial
component of agent-based modeling in transport. The activity-based
approach being a specific type of travel demand modeling, is often
utilized in ABMs [53]. These methods are used to model various com-
ponents of the travel demand such as activity sequence, activity loca-
tion, activity duration, and transport mode by using the activate-based
approach. The conceptual background behind this approach is ex-
plained in section 2.1.1. Here, we will discuss different methods using
the activity-based approach, concentrating on computational process
models, which will be explained below.

The methods used to develop activity-based models are grouped
under three categories: constraint-based models, econometric mod-
els, and computational process models [6]. While some models stick
to a single modeling method, there are also models utilizing multiple
activity-based modeling methods such as TASHA [54], ADAPTS [55].

Constraint-based models are used in the activity-based modelling
approach to generate travel demand. These models do not aim to
predict activity-pattern but rather to evaluate whether a given activ-
ity schedule is possible in a particular space-time context [56]. All
possible activity schedules are first generated using a combinatorial
algorithm, and the schedules are then given as input to the mod-
els. The constraint-based model checks the feasibility of the activity
schedule by the start-end time of activities, the activity duration, the
location of the activities, and travel time with the used transport mode.
These models have some shortcomings: (i) the choice of travel be-
havior under uncertainty is disregarded, (ii) space-time criteria are
defined by a deterministic approach determining fixed opening times,
the maximum speed limit, and so on [6, 57]. PESASP [56], CARLA
[58], MAGIC [59] and GISICAS [60] are some of the examples to the
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constraint-based of modeling approach.
The second stream of activity models is econometric models (utility-

maximizing models). These models are conceptualized based on the
theory that individuals constantly desire to maximize their utilities
from their choices. These models utilize a series of discrete choice
models (particularly nested logit models) to represent individuals’
travel decision-making processes and deduce the activity schedule
that provides the maximum utility to the individuals from their activity
travel choices [6, 61]. One of this type’s best-known models developed
by Ben-Akiva and Bowman [62],[63] formalizes its methodology with
five nested model as follows: (i) decision-makers choose a travel pat-
tern including not traveling and accordingly, (ii) time of primary tour
of day, (iii) primary destination and travel mode, (iv) time of second-
ary tour of day, (iii) secondary destination and travel mode. Activity
travel pattern is defined by primary tour type categorized into the
home, work, school, or other, and its frequency and secondary tour.
CEMDEP [64], PCATS [65], and NYMTC [66] are some of the examples.

Although econometric models are widely used in modeling travel be-
havior, they are criticized for being unrealistic. These models assume
that all decision-makers are rational utility maximizers. The assump-
tion means that people think about the consequences rationally and
choose the one that gives them the most benefit in every decision.
However, this assumption is not always valid. Individuals also make
decisions that are less beneficial or whose benefits are unknown.

Computational process models (rule-based models) are one of the
most recent modelling techniques in the activity-based modeling ap-
proach. A set of heuristic rules are used to model travel behaviors
instead of applying the assumption that individuals always attempt
to maximize their utilities. The activity-travel schedule of the people
is generated through the application of these rules at various decision
stages. Depicting travel behavior based on deterministic rules is how-
ever seen as a limitation of this modeling system since it does not deal
with the uncertainty in human mobility. SCHEDULER [67], TASHA
[54], and AMOS [68] are some early examples of these models.

Machine learning techniques such as neural networks, support
vector machines, or decision trees have begun to be used in recent
applications to extract rules from data. Since these techniques provide
a higher predictive capability to identify and differentiate complex
patterns of human mobility, the use of machine learning in activity-
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based models receives increasing attention over the past decade [69].
Some of these models employing machine learning techniques are

briefly reviewed here. ALBATROSS [70] is one of the first implementa-
tions of a rule-based machine learning approach using decision trees.
The model uses the assumption that individuals make plans based
on their priorities of activities. These activities groups are either fixed
such as work or flexible such as daily shopping (See more in [71], and
[72]). AgentPolis is an open-source simulation framework using neural
networks, where individuals can dynamically replan their activities at
any point in time [73]. Hafezi, Liu and Millward [69] proposes a mod-
eling framework to explore and understand activity pattern clusters.
Twelve clusters of homogeneous daily activity patterns were defined
using a fuzzy C-means (FCM) clustering algorithm. The clustered
data were used to deduce dependencies between activity type, activity
sequence, and socio-demographic characteristics of individuals [74].
Individual daily activity schedules that consist of activity type and
sequence were modeled by [75]. Model parameters were calculated
using support vector machines (SVM). Recently, a data-driven activity
scheduler (DDAS) using supervised machine learning methods was
introduced by [76]. DDAS sequentially generates the activity sched-
ule that consists of activity type, start-end time, location, and mode
choice via four separate models.

The use of machine learning techniques makes activity generation
relatively easy compared to traditional methods that depend on expert
knowledge [76]. These techniques are widely used in many fields
with their predictive abilities, robustness, and flexibility, but their use
in predicting activity-travel behavior is not as common as in other
fields [77]. Further, the spatio-temporal transferability of models using
machine learning techniques has not been adequately tested. One
general methodology that is applicable to any region does not exist
yet. Another limitation of this technique is that many ML techniques
lack interpretability and are designed as a black box. The lack of
interpretability makes it difficult to inspect and understand how the
algorithm predicts travel activity behaviors.

2.2.3 Simulation of travel and activity plans

In this section, the agent-based simulation of transportation is ex-
plained. The simulation models provide very detailed information
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regarding each agent’s trips, including the decision processes by mov-
ing individuals on networks based on their activity schedules. The
travel demand described in the previous step is fed into simulation
models, which handle route choice in the network, simulation of
travels, and generation of interactions between agents and the envir-
onment. The simulation models also provide insight into the complex
supply-demand relationship in the transportation system.

The most commonly used agent-based transportation simulation
tool is Multi-Agent Transport Simulation (MATSim). It has the capacity
to simulate high computational large-scale projects in a competitive
time. Some of the recent implementations of MATSim transportation
simulations are: (i) analysis of long-distance travel behavior of a fleet
of vehicles converted to all-electric vehicles [78], (ii) evaluation of the
impact of autonomous vehicles at different levels on people’s mobil-
ity [79], (iii) providing an understanding of the complex relationship
between supply and demand in carsharing systems [80].

Travel
Demand

Scoring

(Utility)

Replanning

Mobility

Simulation Outputs

Figure 2.2: Mobility simulation steps by The Multi-Agent Transport Sim-
ulation (MATSim) tool. Source: Figure 1.1 from MATSim book [p4, 81].

The daily travel behavior of agents is simulated by executing daily
activity plans using MATSim. The concept of a co-evolutionary al-
gorithm is applied to optimize activity plans during the execution.
This means each agent attempts to optimize its activity plan in an
iterative process while they interact with agents in the model environ-
ment, and compete for the limited time-space slots [82]. The iterative
process with the co-evolutionary algorithm results in a user equilib-
rium Horni, Nagel and Axhausen [81].

The MATSim algorithm consists of five steps with a loop, initial de-
mand, mobility simulation, scoring, re-planning, and analysis steps
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(Figure 2.2). It begins by feeding MATSim with the travel demand gen-
erated from the population’s daily activity schedules. In every iteration,
each agent performs its activities depending on its activity schedule us-
ing the transportation infrastructure, and then a score corresponding
to their performance is calculated. The score combines activity utility
and travel disutility [83]. The calculated scores are stored. A certain
share of the agents are allowed to replan their activity-travel schedules,
and the loop restarts. After a certain number of iterations, the model
outputs are obtained at a higher spatio-temporal resolution.
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CHAPTER 3

Summary of Appended Papers

3.1 Synthetic Sweden Mobility (SySMo) Model
Documentation (Paper A)

The model documentation describes the methodology of the Synthetic
Sweden Mobility (SySMo) Model consisting of population synthesis,
activity generation, and location and mode assignment components.

3.1.1 Introduction

The Synthetic Swedish Mobility (SySMo) model is a large-scale trans-
portation model developed with an agent-based modeling (ABM) ap-
proach. SySMo provides a scaffold to build decision support tools that
play a part in identifying key drivers and areas where decision-makers
need to improve measures to achieve their goals, such as climate tar-
gets or other societal aims. The model first generates a synthetic rep-
lica of the Swedish population with certain attributes associated with
human transport behavior. Thereafter, the heterogeneous activity-
travel schedules showing activity and trip features are added to the
synthetic population. The model provides a platform to create vari-
ous future scenarios while not violating any privacy issues since it is
completely synthetic. E.g., SySMo model enables the analysis of innov-
ations such as electric vehicles (EVs) and shared autonomous electric
vehicles (SEAVs) that can play a role in the sustainable transformation
of future transport systems.

The adopted agent-based modelling framework in SySMo corres-
ponds to the disaggregated modeling approach, where each actor is
modeled separately. As well as many other advantages, such as mod-
eling actors’ interaction with each other and the transportation infra-
structure, ABM provides high spatio-temporal resolution. Another
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fundamental feature of SySMo is that it employs an activity-based
approach to generate the travel demand. This approach relies on the
assumption that people travel to participate in activities and fits well
into the agent-based modeling framework, in which each person’s
travel behaviors are modeled separately. Such a model constructs a
complete activity schedule consisting of activities to be performed
at different places at different times for all members of a population.
The SySMo model is the first of its kind to depict the entire Swedish
population and its travel behavior at a disaggregated level.

3.1.2 Methodology

The Synthetic Sweden Mobility (SySMo) Model consists of three key
components: population synthesis, activity generation, and location
and mode assignment. Figure 3.1 shows the model workflow describ-
ing how these three components are connected and the breakdowns
under each component.

The first component is the population synthesis, where all agents
are generated in three sub-steps. Each agent with basic attributes
(age, gender, civil status, residential zone (DeSO), household size,
and the number of children<6) is deduced at first. Subsequently,
households are created using age, civil status, and household size
attributes. The modeling process in this component is completed by
computing the advanced attributes (employment and student statuses
of agents, car ownership, and personal income) using a novel method
that combines machine learning, iterative proportional fitting, and
probabilistic sampling.

In the second component, the activity schedules characterized by
activity sequence, type, duration, and start-end times are assigned to
each agent. Based on the travel survey, a set of activity types showing
daily activity participation is deduced. Following that, the daily total
duration of each activity type for each individual is determined by
ensuring that durations collectively satisfy consistency constraints. In
the next step, an activity sequence is assigned to every individual by
matching with a person from the travel survey based on the similarities
between their attributes and activity types’ durations. Ultimately,
activity schedules are created for each individual.

The location and mode assignment component assigns loca-
tions to all activities in the sequences and travel modes to access
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Creation of

individuals with

basic attributes

Assignment of
individuals to

households

Assignment of
advanced
attributes

Population synthesis 

Assignment of a

set of activity types 

Determining of

activity durations

Assignment of

activity sequence

Activity generation


Placement of

households in


buildings 

Primary activities'

location and


mode assignment

Secondary activities'

location assignment

Location and mode
assignment


Creating of activity

schedules

Synthetic population
with activity schedules

Figure 3.1: Methodology overview of Synthetic Sweden Mobility (SySMo)
Model. Yellow rectangles: three main components of SySMo model
with procedures of the calculations; pink rectangle: the final outputs, a
spatially explicit agent-based mobility model.

activities. First, each household is spatially placed in a residential
building, broadly classified into detached houses and apartment
buildings. Thereafter, the locations of the primary activities and
travel modes between activities are assigned using Origin-Destination
(OD) matrices from Trafikverket (Swedish Transport Administration)’s
Sampers model, or a variant of the gravity model based on the Swedish
national travel survey. Finally, locations for the secondary activities
whose locations depend on the locations of the primary activities are
assigned, using a variant of the gravity model based on the Swedish
national travel survey.

3.1.3 Results

This section briefly summarizes the SySMo model’s results from pop-
ulation synthesis and location and mode assignment components.
The results of the activity generation component are presented under
Section 3.2 (Paper B).
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The created population is first validated against data from Statistic
Sweden [84]. We compute the percentage difference in the number of
individuals with respect to basic attributes and advanced attributes
in each DeSO zones (the average population is 1 706 people in each
zone) and the distribution of the mean-square error (RMSE). Figure
3.2 a) shows the percentage error in the number of employees in each
DeSO zones. The error is between -3% and 3% in more than 55 percent
of the DeSO zones, and the RMSE is 26.63. Figure 3.2 b) shows the
percentage error in the number of in the number of cars in each DeSO
zones. The error is between -3% and 3% in more than 76 percent of
the DeSO zones, and the RMSE is 17.47. Since these attributes are
advanced attributes (i.e. derived based on the basic attributes) the
error is slightly higher than basic attributes.

(a) Employees (b) Cars

Figure 3.2: The percent error in the number of employees in each DeSO
zones(a) and the percent error in the number of cars in each DeSO
zones(b).

To evaluate the location and mode assignment component and the
previous steps, we looked at the predicted total distance traveled an-
nually by travel modes. The passenger and goods transport statistics
from Trafikanalys [85] are used to compare with our results. To calcu-
late the actual road (network) distances, we multiply the car driver,
and car passenger modes’ Euclidean distances by

p
2 (see more regard-

ing the calculation in the paper [86]). Data from the travel survey were
also used for comparison. The comparison of annual total passenger
kilometre show that our model results are very close to the Survey and
Trafikanalys data (Table 3.1).
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Table 3.1: Annual total passenger kilometres by mode in 2018 (in bil-
lions km)
In the Trafikanalys column, the numbers calculated using the old tech-
nique are on the left side, and on the right side are from the new tech-
nique.

Mode
SySMo weighted
by weekdays and

weekends
Trafikanalys Survey

Car Driver+Passenger 98 95 - 116 113
Public Transport 24 26 30
Bike 3 2.8 - 3.1 3.3
Walking 4 2.0 - 3.7 3.8

3.2 The Heterogeneous Travel Activity of a Syn-
thetic Population (Paper B)

The paper is concerned with the heterogeneous travel activity genera-
tion for the synthetic population defined in SySMo.

3.2.1 Introduction

Agent-based modeling (ABM) framework equipped with an activity-
based travel demand generation approach is a pervasively adopted
method by modelers to model travel behavior. Buliung and Kanaro-
glou [5] claim that the activity-based approach provides the most rig-
orous view of the transportation model in generating travel demand.
The proper implementation of the activity generation component
still plays a crucial role toward developing a model that accurately
represents the population’s mobility pattern.

Many models have developed so far utilizing the activity-based
approach (e.g., Miller and Roorda [54], Arentze and Timmermans
[70], Hafezi, Liu and Millward [74], Allahviranloo and Recker [75] and
Drchal, Čertickỳ and Jakob [76]. Although the previous studies give
accurate results in representing the population’s travel behavior in
an overall picture, they are inadequate in reflecting the heterogeneity
within sub-populations. The human travel behavior is highly complex,
and it will be an oversimplification to assume that this behavior is
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homogeneous within a particular group characterized by various at-
tributes. For instance, the studies exploring activity travel behaviours
of senior people show the heterogeneity within the sub-population
and provide better understanding of travel behavior [87, 88].

In this paper, we propose a novel methodology to capture the het-
erogeneity in activity generation among individuals in a synthetic
population. Using machine learning in conjunction with probability
models enables to maintain heterogeneity by sampling from the de-
rived probability distributions of the attributes constituting the daily
schedules. So that, while the model captures the overall distribution
of attributes in the population, it allows for more targeted and precise
studies of people’s mobility with the heterogeneous structure.

3.2.2 Methodology

The activity generation framework has four major steps: assignment
of a set of activity types, determination of the duration of each activity
type, assignment of the activities sequence, and creation of activity
schedules for each individual. Figure 3.3 illustrates the proposed activ-
ity generation workflow through four main steps and their connection.

The methodology’s first step comprises the assignment of a set of
activities showing the activity participation of each individual during
a day using a machine learning method, neural network classifiers
(NNC). The considered activity types are home (h), work (w), school
(s), and other(o) activities. In the second main step, we deduce the
daily total activity duration for each activity type in three sub-steps.
Here, we train NNCs to jointly predict the broad duration classes that
classify an individual’s total activity time for different activities as low,
moderate, or high. The total daily travel time range (T T ) for each
agent is then deduced. Based on the predicted broad duration classes
and travel time range, an hourly duration for each activity type is
estimated using NNCs. The hourly durations are assigned such that
they collectively meet the constraint (eq. 3.1) implying the sum of the
duration of the activity types within 24 hours minus the range of the
day’s total travel time.

24h−T Tlower limit ≤
h ,w ,s ,o
∑

n

the duration of n < 24h−T Tupper limit (3.1)
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Synthetic population

1) Activity Participation

Data preparation

Assignment of 
activity types; 

work, school, and other

2) Duration and  3) Sequence of Activities

Determining broad 
classes of durations

Determining range of 
daily travel time

Determining durations of 
activity types

Assignment of 
activity sequence

4) Activity Scheduling

Initializing daily 
activity schedule at 3 AM

Setting the start and end 
time of activity instances

Activity schedules

Travel
survey

Travel
survey

Travel
survey

Figure 3.3: Methodology overview of the activity generation module
of Synthetic Sweden Mobility (SySMo) model. Yellow rectangles: major
steps of the activity generation; purple rectangles: steps of the calcu-
lations; green ellipses: input data; pink rectangle: model outputs of
activity schedules for each individual.

The third step assigns an activity sequence to each individual
through matching with an individual from the national travel survey
using the agents’ attributes and travel times. Finally, in the last main
step we calculate the duration of activity instances in the sched-
ules and create activity schedules containing activity type, activity
sequence, and start and end times of activity instances for each
individual.
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3.2.3 Results

The proposed activity generation modeling framework is applied to
the Swedish synthetic population created within the SySMo model.
We reproduce heterogeneous daily activity schedules, including the
synthetic population’s activity type, start-end time, duration, and se-
quence. To evaluate the model results, we first compare the produced
distributions by the model with the travel survey using distance met-
rics. We employ the Hellinger (H) and Jensen–Shannon (JS) distances
having values in the range [0,1], where 1 means the maximum distance
i.e., completely different distributions. Our calculated Hellinger and
Jensen–Shannon distances are in the range [0.07,0.24] and [0.10,0.20],
respectively, from various comparisons such as the activity duration
distribution by gender, or income groups, the activity end-time distri-
bution by activity type, and so on. These results show that the model
accurately predicts distributions regarding the features of the activity
schedule.

(a) (b)

Figure 3.4: Activity pattern of the synthetic agents; aged 40-45, male,
married, employee, in high-income class, no children ≤ 6 years old
in household, and no car in household, residing in Stockholm. (a):
Aggregated activity pattern of the sub-population by activity type, (b):
Percentage of 10 most frequent daily activity sequences in the the sub-
population (26 thousand agents in total).

Figure 3.4 illustrates one of the main results of the model depicting
the heterogeneous activity patterns of a particular population group.
The plotted set contains individuals with an age range of 40-45, male,
married, employed, in high-income class, with no children ≤ 6 years
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old in household, no car in household, and residing in Stockholm.
In the figure, while Panel a shows aggregated activity patterns of the
population set with the share of participation in different activity types
during a day, Panel b depicts the frequency of the 10 most frequent
daily activity sequences in the population. Even though the frequency
of the activity pattern (H-W-H) is more than 35 percent, this is still
below half of the agents and other activity sequences are present
within the group.
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CHAPTER 4

Discussion and outlook

This thesis contributes to the literature on agent-based modeling, a
state-of-the-art method in transportation modeling. The focus is on
the development of a sensitive tool to serve informed policy-making
by evaluating future mobility vehicles. One of the advantages of the
model is the large-scale advanced synthetic population with socio-
economic attributes. Other studies are so far limited to small regions
(i.e., Stockholm [7]) or focusing on the part of mobility behaviours
(i.e., long distance trips [8]). Our methodology produces a statistic-
ally accurate representation of the whole population. Furthermore,
the proposed methodology keeps the correlation between agent’s at-
tributes and mobility patterns using the advantages of ML and IPF
methods. Having such a large population with attributes provides
flexibility in scenario generation and also allows accurate traffic sim-
ulation. For instance, in one particular scenario, people’s mobility
can be analyzed by assigning only electric vehicles for commuting
trips, while in another scenario, people whose income level is above a
certain limit can be studied.

The SySMo model generates the agents with the activity-travel pat-
tern for the base year 2018 since the most recent data is published
in that year. It evaluates new mobility vehicles with today’s popula-
tion and their mobility behaviors on the existing infrastructure. In a
developed country, Sweden, one can assume that the infrastructure
and mobility patterns will not change in a short time. However, this
assumption raises questions regarding the representativeness of the
population for long-term evaluations. As a basic example, the pop-
ulation of Sweden has increased approximately by 15 percent from
1990 to 2020, and it can be considered that the trend will continue
in the next years. Future developments of the model will focus on
the projection of the population. There are well-known methods (see
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more in the papers [45, 48, 89]) to project the population to certain
years. Projecting the synthetic population into the future provides
more targeted policy-making and more detailed assessments of the
future.

ABM is described as a model producing system-wide outputs
through behaviors of autonomous agents performing cooperative or
competitive interactions with one another (see more in Chapter 2).
Modeling the agents requires a lot of detail based on their two found-
ational characteristics, autonomy and interaction, while the practice
of modeling actors involves many abstractions [5, 90]. The agents’
interactions are implicitly modeled in our model. The methodology
described so far includes the preparation of initial travel demand
for all agents. The interaction of the agents and their learning from
actions will be carried out together with the scenario analysis during
the agent-based travel simulation.
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[76] J. Drchal, M. Čertickỳ and M. Jakob (2019). Data-driven activ-
ity scheduler for agent-based mobility models. Transportation
Research Part C: Emerging Technologies 98, pp. 370–390.

[77] A. N. Koushik, M. Manoj and N. Nezamuddin (2020). Machine
learning applications in activity-travel behaviour research: a
review. Transport reviews 40 (3), pp. 288–311.

[78] F. J. Márquez-Fernández, J. Bischoff, G. Domingues-Olavarría
and M. Alaküla (2019). ‘Using multi-agent transport simulations
to assess the impact of ev charging infrastructure deployment’.
In: 2019 ieee transportation electrification conference and expo
(itec), pp. 1–6. DOI: 10.1109/ITEC.2019.8790518.

[79] J. Hamadneh and D. Esztergár-Kiss (2021). The influence of
introducing autonomous vehicles on conventional transport
modes and travel time. Energies 14 (14), p. 4163.

[80] L. M. Martıénez, G. H. d. A. Correia, F. Moura and M. Mendes
Lopes (2017). Insights into carsharing demand dynamics: out-
puts of an agent-based model application to lisbon, portugal.
International Journal of Sustainable Transportation 11 (2),
pp. 148–159.

[81] A. Horni, K. Nagel and K. Axhausen, eds. (2016). Multi-agent
transport simulation matsim. London: Ubiquity Press, p. 618.
ISBN: 978-1-909188-75-4, 978-1-909188-76-1, 978-1-909188-77-
8, 978-1-909188-78-5. DOI: 10.5334/baw.

[82] K. Nagel and F. Marchal (2003). Computational methods for
multi-agent simulations of travel behavior. Proceedings of In-
ternational Association for Travel Behavior Research (IATBR),
Lucerne, Switzerland.

[83] K. Nagel, B. Kickhöfer, A. Horni and D. Charypar (2016). A closer
look at scoring.

[84] Statistics Sweden (2020). https://www.statistikdatabase
n.scb.se/pxweb/en/ssd/.

[85] Passenger and goods transport report (2021). URL: https://
www.trafa.se/ovrig/transportarbete/ (Retrieved: 2021-
11-10).

[86] C. L. Barrett, R. J. Beckman, K. Maleq, V. A. Kumar, M. V. Marathe,
P. E. Stretz, T. Dutta and B. Lewus (2009). ‘Generation and ana-

38

https://doi.org/10.1109/ITEC.2019.8790518
https://doi.org/10.5334/baw
https://www.statistikdatabasen.scb.se/pxweb/en/ssd/
https://www.statistikdatabasen.scb.se/pxweb/en/ssd/
https://www.trafa.se/ovrig/transportarbete/
https://www.trafa.se/ovrig/transportarbete/


lysis of large synthetic social contact networks’. In: Proceedings
of the 2009 winter simulation conference m. Winter Simulation
Conference. ISBN: 9781424457717.

[87] D. Yang, H. Timmermans and A. Grigolon (2013). Exploring het-
erogeneity in travel time expenditure of aging populations in
the netherlands: results of a chaid analysis. Journal of Transport
Geography 33, pp. 170–179.

[88] J. W. Hutchinson (2018). ‘Exploring patterns of heterogeneity in
activity–travel behaviors of older people’. PhD thesis.

[89] J. Li, C. O’Donoghue et al. (2013). A survey of dynamic microsim-
ulation models: uses, model structure and methodology. Inter-
national Journal of microsimulation 6 (2), pp. 3–55.

[90] J. Odell (2002). Objects and agents compared. Journal of object
technology 1 (1), pp. 41–53.

39



40



Paper A

Synthetic Sweden Mobility (SySMo) Model Docu-
mentation





Synthetic Sweden Mobility (SySMo) Model
Documentation
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Abstract

This document describes a decision support framework using a combination of several state-
of-the-art computing tools and techniques in synthetic information systems, and large-scale
agent-based simulations. In this work, we create a synthetic population of Sweden and their
mobility patterns that are composed of three major components: population synthesis, activity
generation, and location assignment. The document describes the model structure, assumptions,
and validation of results.
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Chapter 1

Introduction

“Synthetic Sweden” is a large-scale agent-based model (ABM) that provides a scaffold on which
to build decision support tools to model and analyze future mobility scenarios. It replicates a
statistically accurate representation of the real population of Sweden, but is completely synthetic
so that (a) it does not violate any privacy issues and (b) it can be modified easily to create
alternative scenarios. It is the latter feature that makes the model an ideal tool for modeling
and analyzing future scenarios. The modeling tool can be a valuable planning and visualization
tool for public and private stakeholders in Sweden. In additional, the methodology can be
broadly applied to other regions with new data and carefully calibrated parameters.

Agent-based models (ABM) and activity-based travel demand models are often combined [1].
As well as many other advantages, activity-based demand generation fits well into the paradigm
of multi-agent simulation, where each traveler is kept as an individual throughout the entire
modeling process. Such a model provides the travel behavior of each individual agent by creating
sequences of activities to be performed at different places at different times during a given period
of time, such as one day.

The activity-based modeling approach constructs a complete activity plan for each member of
a population, and derives the transportation demand from the fact that consecutive activities
at different locations are connected by travel via certain modes such as walking, biking, cars,
buses, etc. So, the two important aspects of activity-based travel demand modeling are activity
generation and location assignment. Activity generation is concerned with the types, start
times, and durations of the different activities, along with their sequence. Location assignment
dictates the locations of activities and hence, the origins and destinations of trips.

1.1 Model overview

The Synthetic Sweden Mobility (SySMo) Model is comprised of three key components: popula-
tion synthesis, activity generation, and location and mode assignment. We first briefly describe
how these three components are connected, then we explain the methodology of each compo-
nent in detail (Chapters 3-5). Fig. 1.1 shows a schema of the methodology. The key modeling
components are connected in the following ways:

1. Population synthesis (Chapter 3)

(a) Based on DeSO-level (Demographic statistical areas, see Section 2) data regarding
age and gender distribution, and municipality-level data regarding the distribution
of civil status-age-gender, create a synthetic population with basic attributes: civil
status, age, gender using iterative proportional fitting (IPF).
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(b) Based on DeSO-level data regarding the household types and municipality-level data
regarding the distribution of number of children per household, assign a household
to each individual of the synthetic population; first accounting for adults (singles,
couples, others) and then children.

(c) Based on SCB data and data from travel survey, use machine learning (ML) and
IPF to assign advanced attributes to individuals: employment and student statuses,
personal and household incomes, car Ownership, etc.

2. Activity generation (Chapter 4)

(a) Based on the travel survey, assign a set of activity types to each individual using
ML

(b) Based on the travel survey and activity participation of individuals, determine du-
ration of each activity type for each individual while ensuring that durations collec-
tively satisfy certain consistency constraints.

(c) Assign an activity sequence to every individual by matching with a person from the
travel survey based on the similarities between their attributes and activity types’
durations.

(d) Create activity schedules for each individual.

3. Location and mode assignment (Chapter 5)

(a) Spatially place households in residential buildings, broadly classified into detached
houses and apartment buildings.

(b) Assign locations for the primary activities and travel modes between activities, using
Origin-Destination (OD) matrices from Trafikverket (Swedish Transport Adminis-
tration)’s Sampers model, or a variant of gravity model based on Swedish national
travel survey.

(c) Assign locations for the secondary activities whose locations depend on the locations
of the primary activities, using a variant of gravity model based on Swedish national
travel survey.

The travel behavior of an individual, as well as the overall population, on a weekend is signifi-
cantly different from that on a weekday. Thus, modeling the daily travel pattern corresponding
to an average day of the week would capture neither a weekday nor a weekend accurately.
Hence, in the SySMo model, we model daily travel patterns corresponding to two types of days:
an average weekday and an average weekend.

6
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Figure 1.1: Methodology overview of Synthetic Sweden Mobility (SySMo) Model.
Yellow rectangles: three main components of SySMo model; blue rectangles: procedures of the
calculations; green ellipses: input data for modeling and calibration; pink rectangle: the final
outputs, a spatially explicit agent-based mobility model.
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Chapter 2

Data Description

There are four main sources of data for building and calibrating SysMo: statistical data from
Statistics Sweden (SCB) (Section 2.1), Swedish national travel survey (Section 2.2), Origin-
Destination (OD) matrices from Trafikverket (Swedish Transport Administration)’s model –
Sampers (Section 2.3), and buildings from Lantmäteriet (Section 2.1). Data from Transport
Analysis agency (Section 2.5) is utilised to validate SySMo model. The SCB statistics and the
travel survey used to construct the model are used for in sample validation as well (See more
in chapter 6). We present a brief description of the data in the sections below. Other data are
explained elsewhere in the documentation where suitable.

2.1 Statistical data of Sweden

Statistics Sweden (SCB) [2] produces the official statistics at various geographical levels such as
municipality or zone system. Fig. 2.1a shows the boundaries of 290 municipalities which act as
local government entities. The statistical data at municipal areas are the number of individuals
with a given combination of gender, age group, and civil status, number of children belonging to
different household types, number of individuals belonging to different income classes, average
household income of individuals in a given age group belonging to a given household type, and
number of employees by industry types.

SCB also provides data at a zone level called Demographic Statistical Areas (DeSO) [3]. DeSO
zones follow municipal boundaries and each municipality consists of a number of DeSO zones,
for a total of 5,984 DeSO zones in Sweden (Fig. 2.1b). Each DeSO zone typically has between
700 and 2,700 inhabitants. The data utilized at DeSO zone level are the number of males
and females, number of individuals belonging to different age groups, number of households of
different types (single, couple, other), number of employees and students, and number of cars.

Sweden is also divided into sq.km. (square kilometer) grids, whose primary purpose is to capture
the density of population in different regions. In this grid system, statistics on the registered
population are presented in 114161 square areas covering only populated areas within Sweden.

2.2 Swedish national travel survey

The Swedish national travel survey [4] provides the data about the travel behaviour of anonymized
individuals in conjunction with data on their socio-economic and geographical characteristics.
The survey period is between 2011 and 2016, and consists of around 40000 participants aged
6-84 years. The travel survey was conducted with individuals, not households. However, the
survey respondents provide some information regarding the household and its members such as
number of people in the household. Activity location information of individuals is deduced from
the start and end point of travel and activities are broadly classified as home, work, school, and
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2. Data Description

(a) municipal areas (b) DeSO zones

Figure 2.1: Swedish nation-wide geographic subdivisions

other.

Each participant has one weight Vk according to their socio-demographics and another weight
Vd based on the day the participant conducted the survey. These weights directly indicate the
representative power of the respondent regarding socio-demographics or travel patterns. The
total population can be generated using these weights.

In our model, we use the travel survey to train our ML algorithms and obtain various char-
acteristics of our synthtic population such as employment and studenthood statuses, activity
sequence, activity start-end times, activity durations, distances traveled, and trip modes.

2.3 The origin-destination (OD) matrices

Sampers [5], is a national transportation model developed by Trafikverket (Swedish Transport
Administration) to do traffic analyses of passenger transport across Sweden. Predicting future
traffic flows, evaluating new investments, and analyzing the impact of transportation policies
are among the main uses of the model. The travel analyses can be carried out at the national
or regional level.

Sampers consists of five regional models that are Palt, Samm, Sk̊ane, Sydost, Väst and a
national model covering the whole of Sweden. The national model consists of 682 zones, while
the regional models provide data with a higher spatial resolution with a total of more than
10,000 zones. The national model captures only long-distance trips (more than 100 km). Each
regional model consists of zones of different sizes. In a core area of a regional model, there
are zones with a division into very fine zones. A core area is bordered by a ring area that
usually consists of zones that are not as fine. The zones in remote areas representing the rest
of Sweden are quite coarse.(Fig. 2.2). From Trafikverket, we received Samm and Väst regional
models, which cover the two largest cities in Sweden: Stockholm and Gothenburg respectively,
and the national model. These models contain information regarding short and long distance
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2. Data Description

(a) Väst regional (b) Samm regional (c) National

Figure 2.2: Zone systems of Swedish Sampers transportation model: regional
(Väst and Samm) and national.

OD matrices by modes of transport (car, bike, walk, public transport) and by trip purposes
(work, business, other, and private). Fig. 2.2 shows the zone systems in the two regional and
the national models.

2.4 Buildings
The building data is adapted from the property registers covering all Sweden. It is in vector
format and provide by Lantmäteriet [6]. The data contains more than 8.6 million buildings
with its location, geometry, and type by usage purpose. We use the data to determine the home
locations of the agents and where their activities take place. While assignment of individuals’
activity locations at zone levels suffices for an aggregate analysis, we assign all activities to
buildings to have higher spatial resolution in SySMo. Assigning the activities performed by
agents to the buildings locations makes it possible to do more precise spatial analysis.

For assignment of residential buildings in SySMo, we use two main building types, which we
create by combining the subcategories in the data: detached houses and apartments. Along
the same lines, work, school, and other main categories are created from the subcategories in
the building type and so each building is used for the activity assignment procedure by activity
type.

2.5 Data on distance travelled
Transport Analysis is an agency established to produce official statistics on transport in Sweden.
To validate the model results in SySMo, we use annual total distances travelled by modes of
transport (Transportarbete) [7] generated by using calculation techniques and models. The data
is available from 2000 to 2020. After 2016 they publish two values per year since the agency
adopted a new method for calculating the total distance travelled, thus both values based on
both the old and new method are presented.

The statistics includes the four main modes of transport road, rail, aviation and shipping and
their respective subgroups. Road transport is divided into passenger car, bus, motorcycle,
moped, bicycle and walking. For rail transport, modes of travel by rail, tram and metro are
included. We use the statistics on road and rail modes only to validate the result of SySMo,
i.e., they are not used as an input to the model.
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Chapter 3

Population Synthesis

The attributes of individuals are classified into basic and advanced. We first synthesize the
individuals along with their basic attributes. These consist of age, gender, civil status, and
residential zone. We then assign individuals advanced attributes, i.e., employment and student
statuses, personal income, and car ownership. Table 3.1 summarizes the variables that represent
the different attributes used in the presentation of the methodology.

Table 3.1: Variable for describing individuals.

Variable Description Subcategories

g gender Male, Female
a age group 0, 1-6, 7-15, 16-18, 19-24, 25-29, 30-34, 35-

44, 45-54, 55-64, 65-75, 75-84, 85+
c civil (marital) status Single, Couple, Child
zm municipality zone -
zd DeSO zone -
ψW employment status Employed, Not employed
ψS student status Student, Not student
ρc personal income class 0, [1, 180K), [180K, 300K), [300K, 420K),

[420K, 1M)
n number of cars owned 0,1,2,3

The procedures and assumptions are described in detail in the sections below.

3.1 Assigning basic attributes

For synthesizing individuals and their basic attributes, data for gender (i.e., number of males
and females) and age (i.e., number of individuals belonging to different age groups) are available
at the DeSO level. The data for the number of individuals with a given combination of gender,
age group, and civil status (single, couple, or child) are available at the municipality level.

Let N(zd, a) denote the desired number of agents belonging to age group a in DeSO zone zd.
Similarly, let N(zd, g) denote the desired number of agents belonging to gender g in DeSO zone
zd. Let N(zm, a, g, c) denote the desired number of agents belonging to the combination of age
group a, gender g, and civil status c, in municipality zone zm. Let A,G,C be the sets of age
group, gender, and civil status, respectively. We consider A = {0, 1-6, 7-15, 16-18, 19-24, 25-29,
30-34, 35-44, 45-54, 55-64, 65-75, 75-84, 85+}; G = {‘male’, ‘female’}; C = {‘single’, ‘couple’,
‘child’}. We use i to denote a typical agent and k to denote a typical household. Let n(zd, a, g, c)
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3. Population Synthesis

denote the deduced number of agents belonging to the combination of age group a, gender g,
and civil status c, in DeSO zone zd.

The iterative proportional fitting (IPF) procedure is used to deduce n(zd, a, g, c), ∀zd, a, g, c (i.e.,
the number of agents belonging to every combination of DeSO zone zd, age group a, gender
g, and civil status c). In particular, we iterate over the following sequence of update rules
for a fixed large number of iterations or until a desired level of convergence is reached (in our
implementation, we consider 20 iterations).

∀zd, a, g, c :

n(zd, a, g, c)←
N(zm, a, g, c)∑

zd′∈zm n(zd′ , a, g, c)
n(zd, a, g, c) (3.1)

where zm 3 zd ,

n(zd, a, g, c)←
N(zd, a)∑

g′∈G
c′∈C

n(zd, a, g′, c′)
n(zd, a, g, c) (3.2)

n(zd, a, g, c)←
N(zd, g)∑

a′∈A
c′∈C

n(zd, a′, g, c′)
n(zd, a, g, c) (3.3)

Equation (3.1) scales the deduced number n(zd, a, g, c) on DeSO zone level by the ratio of the
desired number N(zm, a, g, c) on municipality zone level to the number obtained in an iteration
on municipality zone level, so as to drive the obtained number towards the desired number.
Eqs. 3.2 and 3.3 drive the numbers obtained in an iteration toward the desired numbers of age
and gender, respective, at DeSO zone level. The numbers n(zd, a, g, c) are finally rounded to
the nearest integer. Note that since the last step corresponds to scaling with respect to the
gender data on the DeSO zone level, the obtained population would be exactly consistent (up
to a round-off error) with the gender data on the DeSO zone level.

We initialize the number of agents belonging to a given combination of gender, age group,
and civil status on DeSO zone level, by dividing the desired number of agents belonging to
that combination on the municipality level into the number of DeSO zones belonging to that
municipality. That is,

∀zd, a, g, c : n(zd, a, g, c)←
N(zm, a, g, c)

|zm|
, where zm 3 zd (3.4)

Here, zm 3 zd denotes that municipality zone zm contains DeSO zone zd, and |zm| is the size of
the municipality zone (i.e., the number of DeSO zones constituting the municipality).

This simulation hence synthesizes n(zd, a, g, c) number of agents having the combination of
corresponding basic attributes, namely, DeSO zone zd, age group a, gender g, and civil status
c.

3.2 Creating households
The second key step in the synthetic population is the creation of households of different types
(couple, single, and other) and assigning children to the households. Data on the number of
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3. Population Synthesis

households of these different types are available for each DeSO zone. A ‘couple’ household
contains a couple with or without children. A ‘single’ household consists of a ‘single’ individual
with or without children. Any other type of household (e.g., one with multiple singles or multiple
couples or a combination of singles and couples) is classified as ‘other’ household.

3.2.1 ‘Couple’ households

We use a statistical method for matching individuals based on age. In particular, we consider
the distribution of the age difference between the two individuals of a ‘couple’ household. From
the national travel survey, we observe the variance (say, σ2a) of the age difference between two
individuals in a ‘couple’ household. For each DeSO zone, we sort the list of ‘couple’ individuals
by gender and then divide the list into two even groups. In cases where the number of males and
females on the ‘couple’ individuals list is not equal, the groups contain individuals from both
genders. These mixed groups result in some of the ‘couple’ households comprising individuals
of the same gender. But with a small number of exceptions, the two individuals would belong
to different genders. Given the group containing half of the ‘couple’ individuals in a DeSO
zone, we sort the first group in ascending order of age. Afterwards we then sort the second
group in ascending order of an age proxy , which we obtain by sampling a value from Gaussian
distribution with the actual age as its mean and the aforementioned observed variance σ2a. That
is, for an individual i having age ai belonging to the second group, its age proxy is sampled
from N (ai, σ

2
a). The two ordered groups are then matched one-to-one. Note that we use an age

proxy instead of the actual age for the second group, to ensure some disparity in the ages of the
matched individuals. Also note that in order to avoid overfitting, we use only the travel survey
for tuning the variance, not for precise modeling of matching with respect to age.

3.2.2 ‘Single’ households

Typically, it is much more likely that younger individuals with ‘single’ status share houses with
other singles, than elder individuals with ‘single’ status sharing houses with other singles. So,
we sort the list of ‘single’ individuals in a DeSO zone in descending order of age and assign
household status in that order based on the number of single households at DeSO level. So
that elder individuals are given a higher priority of being assigned ‘single’ households. If the
number of singles exceeds the number of ‘single’ households in the DeSO zone, the younger
single individuals could share houses with other single individuals, and hence they would be
assigned as ‘other’ households.

Note that owing to inconsistencies between datasets and procedural errors, the previously as-
signed civil statuses of certain individuals may get altered post household assignment. For
instance, an individual with civil status ‘couple’ may end up staying alone in a ‘single’ house-
hold, in which case, its civil status is altered to ‘single’.

3.2.3 Assigning children

We assign children to households using a two-step method. In the first step, the number of
children in each family is determined. From the data regarding the total number of children in
each municipality belonging to each household type, we derive the probabilities of a given type of
household in each municipality having 0, 1, 2, and 3+ children. Afterwards, we assign number
of children to each household by sampling from the corresponding multinomial distribution
over {0, 1, 2, 3}. If the sum of the sampled numbers is less than the number of children in the
municipality, some households with sampled value of 3 are randomly assigned a slightly higher
value (given that the data is actually 3+ and not exactly 3 children), so that the sum of the
sampled numbers equals the number of children in the municipality. If this sum is more than
the number of children, we do not do any further processing.

We assign children to households (in other words, matching children with households) in the
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second step. The households are sorted in ascending order of the age of the eldest constituent
individual. Then, we create a list where each household is replicated by number of children
assigned above. We create a second list by sorting the children in the considered municipality in
ascending order of an age proxy , that is obtained by sampling a value from Gaussian distribution
with the actual age as its mean and some variance. These two lists of households and children are
matched one-to-one. Thus, all the synthetic agents, including children, are assigned households.

3.3 Assigning advanced attributes

The advanced attributes for the synthetic individuals include employment and student statuses,
personal income, and car ownership.

3.3.1 Employment and student statuses

We model the employment status (ψW ) and student status (ψS) of individuals, given their
socio-economic attributes, using neural network classifier (NNC). ψW is a binary variable
corresponding to being employed and ψS is a binary variable corresponding to being a stu-
dent. The classes considered are: neither employee nor student (ψW = 0, ψS = 0), only em-
ployee (ψW = 1, ψS = 0), only student (ψW = 0, ψS = 1), and both employee and student
(ψW = 1, ψS = 1). The Swedish national travel survey is used for training the classifier. In
particular, the features considered are age, gender, civil status, coordinates of the municipal-
ity’s center, household size (i.e., number of residents in household), and number of children ≤ 6
years old in household. The relevant data available for calibration are the number of employees
and students in each DeSO zone. Let N(zd, ψW ) and N(zd, ψS) respectively denote the desired
number of employees and students in DeSO zone zd. Let Pi(ψW = x, ψS = y) denote the
probability that a synthetic agent i’s employment status is x and student status is y, where
x, y ∈ {0, 1}. We obtain the preliminary values of this probability from the output of the neural
network classifier, which would correspond to the probability of the agent belonging to the class
(ψW = x, ψS = y). Note that we have, ∀i :

Pi(ψS = 1) = Pi(ψW = 0, ψS = 1) + Pi(ψW = 1, ψS = 1) and

Pi(ψW = 1) = Pi(ψW = 1, ψS = 0) + Pi(ψW = 1, ψS = 1).

Similar to IPF, we iterate over the following sequence of update rules for a fixed large number
of iterations or until a desired level of convergence is reached.

For x ∈ {0, 1},∀zd, ∀i ∈ zd :

Pi(ψW = x, ψS = 1)← N(zd, ψS)∑
j∈zd Pj(ψS = 1)

Pi(ψW = x, ψS = 1) (3.5)

For y ∈ {0, 1},∀zd, ∀i ∈ zd :

Pi(ψW = 1, ψS = y)← N(zd, ψW )∑
j∈zd Pj(ψW = 1)

Pi(ψW = 1, ψS = y) (3.6)

For x, y ∈ {0, 1},∀i :

Pi(ψW = x, ψS = y)← Pi(ψW = x, ψS = y)∑
x′,y′∈{0,1} Pi(ψW = x′, ψS = y′)

(3.7)
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Equation (3.5) scales the probabilities so that the sum of probabilities of being a student, over
all agents in a given DeSO zone, is consistent with the desired number of students in that DeSO
zone. Similarly, Equation (3.6) scales the probabilities so that the sum of probabilities of being
an employee, over all agents in a DeSO zone, is consistent with the desired number of employees
in that DeSO zone. Equation (3.7) ensures that for every agent, the probabilities of belonging to
the four classes sum to 1. A class is hence assigned to every agent using multinomial sampling
corresponding to the deduced probabilities. Thus, every agent is assigned its employment and
student statuses. Note that this would capture heterogeneity in population since similar agents
can have different employment and student statuses.

3.3.2 Personal income

We first model the personal income class (ρc) of agents using neural network classifier, given their
socio-demographic information. The 5 classes considered in terms of Swedish krona (SEK) are:
I = { 0, [1, 180K), [180K, 300K), [300K, 420K), [420K, 1M) }. The partitions are based on the
Swedish national income quartiles; also we consider the upper limit to be SEK 1M in our model.
The Swedish national travel survey is used for training the classifier. The features considered
include features used for modeling employment and student statuses as well as employment and
student statuses themselves.

The relevant data showing the number of individuals for all classes in each municipality is avail-
able for calibration. Let N(zm, ρ

c = x) denote the desired number of individuals in municipality
zone zm belonging to income class x. Let Pi(ρc = x) denote the probability that a synthetic
agent i’s income class is x, where x ∈ I. We obtain the preliminary values of these probabilities
from the neural network classifier’s output. Similar to the procedure for deducing employment
and student statuses, we iterate over the following sequence of update rules for a fixed large
number of iterations or until a desired level of convergence is reached.

∀x ∈ I, ∀zm, ∀i ∈ zm : Pi(ρc = x)← N(zm, ρ
c = x)∑

j∈zm Pj(ρc = x)
Pi(ρc = x) (3.8)

∀x ∈ I, ∀i : Pi(ρc = x)← Pi(ρc = x)∑
x′∈I Pi(ρc = x′)

(3.9)

Equation (3.8) scales the probabilities so that the sum of probabilities of belonging to an income
class, over all agents in a given municipality zone, is consistent with the desired number of
individuals belonging to that income class in that municipality zone. Equation (3.9) ensures
that for every agent, the probabilities of belonging to the different classes sum to 1. An income
class is hence assigned for every agent using multinomial sampling corresponding to the deduced
probabilities.

3.3.3 Car ownership

Car ownership is the number of cars owned by each agent. In order to design our methodology
for assigning car ownership, we make a practically reasonable assumption that an agent would
be able to drive only if the agent owns at least one car, and an agent can own a maximum
of 3 cars (which would hold true for almost all agents in practice). If an agent does not own
a car, he/she cannot be a car driver, but can be a car passenger. The number of cars owned
by a household would be equal to the sum of the number of cars owned by its constituent
agents. Note that we assign cars to agents and not to households; this helps avoid the problem
of choosing the agent(s) who would drive the car(s) in the household.

We use a neural network classifier trained on the national travel survey, with the features being
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the employment and student statuses, personal income, and the features that were used for
modeling employment and student statuses.

Let Pi(n) denote the probability that a synthetic agent i owns n cars, where n ∈ {0, 1, 2, 3}. So,
the expected number of cars owned by an agent i is

∑3
n′=1 n

′Pi(n′). We obtain the preliminary
values of these probabilities from the neural network classifier’s output. We now calibrate the
preliminary probabilities using the data on the total number of cars for each DeSO zone. Let
Nc(zd) denote the desired number of cars in DeSO zone zd, as per the real data. Since the
expected number of cars in a DeSO zone should be equal to the sum of the expected number of
cars owned by agents in that DeSO zone, we need to update the aforementioned preliminary of
the probabilities so that their sum in a DeSO zone equals the desired total number of cars in
that DeSO zone. Hence, we iterate over the following sequence of update rules for a fixed large
number of iterations or until a desired level of convergence is reached.

∀i,∀n ∈ {1, 2, 3} : Pi(n)← Nc(zd)∑
j∈zd

∑3
n′=1 n

′Pj(n′)
Pi(n), where zd 3 i (3.10)

∀i,∀n ∈ {0, 1, 2, 3} : Pi(n)← Pi(n)∑3
n′=0 Pj(n′)

(3.11)

Here, zd 3 i means that agent i belongs to DeSO zone zd. Hence, each agent is assigned a
certain number of cars using multinomial sampling corresponding to the deduced probabilities.

18



Chapter 4

Activity Generation

The activity generation has four major steps as listed below and illustrated in Fig. 4.1:

• Assign a set of activity types to each individual

• Determine the duration of each activity type for each individual

• Sequence the activities for each individual

• Create activity schedules

The first main step is the assignment of activity types namely home, work, school and other
to the individuals. It includes 2 sub-steps. At first, the requisite data sets are prepared in the
required format. Thereafter, the participation of individuals in activities is assigned.

The second main step includes the calculation of activity duration and sequencing. First, broad
duration classes for all activity types are jointly deduced and overall travel time in a day is
determined. Second, duration of activity types are calculated. In the next main step, an
activity sequence is assigned to each individual by matching with an individual from the travel
survey possessing similar socio-economic attributes and the same set of activity participation,
based on the similarities between the duration of their activity types.

The last main step is activity scheduling. First, in order to provide a temporal organization at
the extremes of the schedule, the duration, start and end time of the activity taking place at 3
am is calculated. After this step, a preliminary activity schedule is generated by distributing
the total duration of each activity type among all the activities instances of this activity type.

Since the travel patterns on weekdays and weekends are significantly different, we model daily
travel patterns corresponding to two types of days: an average weekday and an average weekend.
Hence, while training and calibrating our model for a day of a given type (weekday or week-
end), we consider individuals from the travel survey who were surveyed for the travel behavior
corresponding to that type of day.

4.1 Activity types

For each agent in the synthetic population, we assign a set of activity types that the agent could
be involved in. We consider four broad types of activities: staying at home, working, studying,
and other activities like visiting shops, restaurants, gyms, etc. Throughout this document, we
refer to these activity types as home, work , school , and other , respectively.
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Figure 4.1: The main steps of the activity generation component. Each step in the
activity generation component is represented divisions drawn by vertical dashed lines. Activity
schedules are generated for agents in the synthetic population.

4.1.1 Data preparation

We first filter out individuals from the Swedish national travel survey whose activity schedules
do not meet the requirement of being a daily schedule (e.g., if the sum of the activities’ duration
exceeds one day). We further assume that every individual visits home at least once in a day
and we remove individuals not having a home activity in their daily schedule. Lastly, we filter
out individuals whose first and last activities of the day are different. This is done in order to
be consistent with the traffic simulation model, MATSim, that we plan to couple with later.

We present our methodology and numerical data corresponding to weekday activity schedules;
note that weekend activity schedules can be modeled in the same way. Table 4.1 is a summary
of additional variables used in the activity generation module.

Table 4.1: Summary of additional variables used in the activity generation module.

Symbol Description

H home activity
W work activity
S school activity
O other activity
tA duration of activity type A
θA willingness for activity type A
ψW employment status
ψS student status

4.1.2 Assignment of activity types

We begin by deducing each agent’s willingness to participate in work, school, and ‘other’ ac-
tivity types.1 Let the variable capturing the daily duration of an activity type A be tA, where

1As mentioned previously, it is assumed that each individual visits the home at least once a day and
each individual is willing to join the home activity. Therefore, our model does not include a separate
step to determine an individual’s willingness for home activity.
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A ∈ {H,W,S,O}; H,W,S,O correspond to home, work, school, and other activity types re-
spectively. An individual has willingness for an activity type A (tA > 0) if it is involved in
that activity type on the considered day. We denote the willingness for activity type A by θA
where A ∈ {W,S,O} since H is always = 1. Using neural network classifier (NNC), we model
jointly an individual’s willingness to work (θW ), study (θS), and ‘other’ activities (θO) given
its socio-economic attributes. Modeling over joint classes preserves the correlation between the
participation of the different activity types. We consider a total of 23 = 8 classes, since each
of θW , θS , θO could be either 0 or 1. We develop four different ML models depending on the
employment status (0/1) and student status (0/1). The status considered are: neither employee
nor student (0, 0), only employee (1, 0), only student (0, 1), and both employee and student
(1, 1). Developing four separate models ensures that non-employees do not participate in work
activities and non-students do not participate in school activities.

The Swedish national travel survey is used for training the classifiers; the features considered
are age, gender, civil status, coordinates of the municipality’s center, household size, number
of vehicles owned, income level, and number of children ≤ 6 years old in household. Pi(θW =
x, θS = y, θO = z) is the probability that a synthetic agent i’s willingness to work is x, willingness
to study is y, and and willingness for ‘other’ activities is z, where x, y, z ∈ {0, 1}. A class is hence
assigned for every synthetic agent using multinomial sampling corresponding to the deduced
probabilities.

4.2 Activity duration

We determine the daily duration of different activity types using a two-step method applying
neural network classifiers and sampling techniques (Fig. 4.2). In the first step, we jointly deduce
broad duration classes for the different activity types; this enables us to capture the correlation
between the duration of the different activity types. Broad duration classes are the classification
of an individual’s total activity times for different activities as low, moderate, and high. Using
these broad classes and attributes of individuals, we deduce the range of overall travel time in
a day or rather the range of time remaining in a day after summing the duration of all activity
types. In the second step, using the deduced broad classes of duration of all the activity types
and the range of daily travel time, we derive duration of all the activity types. The method
proposed here replicates people’s heterogeneity in the population by allowing agents with similar
attributes to have different activity duration.

4.2.1 Determining the broad classes of duration of activity

The broad classes for duration we consider, are low, moderate, and high.2 Evidently, the
definitions of low, moderate, and high would depend on the activity type. The broad duration
classes we consider for the different activity types are as follows (in hours):

• Home: (0,12], (12,18], (18,24]

2The purpose of having broad classes for duration is to capture the correlation among the duration of
4 activity types. The sum of the hourly classes is at most 24. A possible distribution of at most 24 hours
among the 4 activity types could be represented by a tuple of 4 positive integers. The number of possible

tuples is

(
24

4

)
= 10,626. Clearly, this is an exceedingly high number of classes for travel surveys, which

typically consist of a few tens of thousands of individuals. Even accounting for the possibility that many
of these joint classes would be vacuous owing to them not corresponding to any individual in the survey,
most of the non-vacuous classes would contain just a few tens of individuals. Such classification is clearly
not suitable for training a neural network classifier. So, it is important that the number of joint classes
is reasonably low, which is why we consider broad classes.
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Activity Durations

24 hours − 𝑡𝑇𝑇 ≤ 𝑡𝐻 + 𝑡𝑊 + 𝑡𝑆 + 𝑡𝑂 < 24 hours − 𝑡𝑇𝑇

Classifier 
for travel

time

3 classes 3 classes 3 classes 3 classesBroad duration 
classes

4 classes

Hourly duration 
classes 𝑡𝑇𝑇 , 𝑡𝑇𝑇

Home SchoolWork Other

Assigned
durations

Testing against 
constraints

(Low/Moderate/High) (Low/Moderate/High) (Low/Moderate/High) (Low/Moderate/High)

𝑡𝐻 𝑡W 𝑡O
Resampling

𝑡𝑆

(E.g., 12 hours) (E.g., 6 hours) (E.g., 3 hours) (E.g., 2 hours)

Figure 4.2: The flow chart of activity duration assignment methodology in SySMo.
Green rectangles: joint model for broad activity duration, yellow rectangles: model for travel
time, pink rectangles: model for hourly activity duration, and gray rectangles: final activity
duration satisfying the constraint.

• Work: (0,6], (6,10], (10,24]

• School: (0,6], (6,8], (8,24]

• Other: (0,2], (2,5], (5,24]

Since we have 3 broad classes for each of the 4 activity types, the total number of joint classes
is 34 = 81. In order to increase the robustness of the classifiers, we consider different classifiers
for different sets of activity types (here, a set for an individual would contain an activity type if
the individual has a willingness for that activity type). Since all individuals are assumed to be
involved in home activity, a set of activity types is of the form {H}∪S, where S ∈ 2{W,S,O} \{}.
Note that we exclude the null set from S since agents with only home and no other activity
type, will be assigned a duration of 24 hours for home activity type. That is, we consider
7 different classifiers. Thus, a classifier trained using survey individuals with a given set of
activity types, is used to deduce the joint class for an agent in the synthetic population with
that particular set of activity types. Similar to the previously described classifiers, the national
travel survey is used for training and the features considered are socio-economic attributes
and employment/studenthood statuses. The classifier produces the probabilities of an agent
belonging to the joint classes; the broad classes of duration of activity types are hence assigned
using multinomial sampling.

4.2.2 Determining the range of daily travel time

In order to deduce more specific duration of the different activity types for an agent, we estimate
the daily total travel time for that agent. The sum of the specific acitivity duration is then set
equal to 24 hours minus the day’s total travel time. Note that agents with only home activity
type are assigned zero daily travel time. We consider 4 classes for estimating daily travel times,
namely (in hours): (0,0.5], (0.5,1], (1,2], 2+. These classes are approximately based on the four
quartiles for non-zero daily travel time in the travel survey.

A neural network classifier is trained using the travel survey, the features being the socio-
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economic attributes, the employment and studenthood statuses, the set of activity types, and
the broad classes of duration deduced above. The classifier outputs the probability distribution
over the 4 classes for each agent; a class is hence assigned using multinomial sampling. Note
that since the ‘2+ hours’ class is unbounded and since the number of surveyed individuals with
more than 6 hours of the day’s total travel time is negligible, we interpret this class as (2,6] hours
when assigning to agents in the synthetic population. Thus, we obtain the class, and hence,
the range of daily travel time for each agent. If the class assigned to an agent is

(
tTT , tTT

]
, the

lower limit of the range of its daily travel time is tTT and the upper limit is tTT .

4.2.3 Determining duration of activity types

Now that we have deduced the broad classes of duration of all activity types and the range of
daily travel time for each agent in the synthetic population, we determine the duration of the
different types of activities with a higher resolution. The sum of the duration of the activity
types should be between 24 hours minus the range of the day’s total travel time

(
tTT , tTT

]
.

That is,

24 hours− tTT ≤ tH + tW + tS + tO < 24 hours− tTT (4.1)

We achieve this in two steps. First, we deduce the preliminary probability distribution over
hourly duration of each activity type, by considering 24 hourly classes per activity type. Then,
we sample the duration of all types of activities such that they collectively satisfy Constraint
(4.1).

We now explain how we deduce the preliminary probability distributions over the 24 hourly du-
ration classes for the different activity types. An hourly duration class is of the form [T, T + 1)
hours, where T ∈ {0, 1, . . . , 23}. We model the hourly duration of an agent’s given activity type
using neural network classifier, given its socio-economic attributes, employment and student-
hood statuses, willingness for the activity types, broad classes of duration of the activity type,
and the class corresponding to daily travel time. When modeling the hourly duration of an
activity type, we consider 3 different classifiers for the 3 different broad duration classes of each
activity type. Each classifier is trained using survey individuals with a particular broad dura-
tion class. We thus obtain the preliminary probability distribution over the 24 hourly duration
classes for the 4 activity types, for each agent in the synthetic population.

Next, we explain how we obtain the duration of all activity types such that their sum satisfies
Constraint (4.1). There are fundamentally two ways to achieve this, namely, the mathemati-
cal way3 and the simulation-based way. In our implementation, we employ a simulation-based
approach. For an agent, we sample the hourly duration of the 4 activity types from the afore-
mentioned preliminary probability distributions. Then, numbers that are sampled uniformly
at random in [0,1) are added to each of the sampled hourly activity duration to introduce id-
iosyncratic variances and generate a final duration. If Constraint (4.1) is satisfied for an agent,
the four activity types are assigned the sampled duration. On the other hand, if the constraint
is not satisfied, we repeat the sampling for the hourly duration and the idiosyncratic variances
procedure. We run the redrawing of samples for a fixed large number of iterations (30 itera-
tions) so that Constraint (4.1) is satisfied for a large fraction (99%) of agents, and hence a large
fraction of agents are assigned duration of the four activity types. However, in order to ensure

3In the mathematical approach, one would need to create a truncated joint distribution of the hourly
duration of the four activity types, which can be obtained by combining the distributions of the activity
types’ duration and truncating to satisfy Constraint (4.1). The hourly duration can then be sampled
from this truncated joint distribution, followed by adding a few minutes to the hourly duration so as to
introduce a natural idiosyncratic variance, while ensuring that Constraint (4.1) is not violated.
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that no agent violates the constraint, in principle, it could take infinite iterations of redrawing
of samples. We hence employ a simple heuristic procedure that trims or adds sampled times for
achieving this and thus assign the activity duration satisfying the constraint to the remaining
agents.

4.3 Activity sequencing

We now generate the sequence of activities for each agent in the synthetic population. While
there are several ways to generate an activity sequence by matching individuals with distinct
sequences, most approaches employed in the literature can be broadly classified into: (a) directly
based on socio-economic attributes, e.g., [8] and (b) based on proxy parameters, e.g., [9] where
the proxy parameters are daily activity duration. We employ the approach of having daily
activity duration as proxy parameters.

The approach is based on the assumption that individuals with similar socio-economic attributes
and activity type duration, would have similar activity sequences. This means that an synthetic
agent in our model would be assigned the activity sequence of the individual in the travel survey
that is most similar to them. In this approach, similarity between two individuals is measured
using Euclidean distance between their attributes and duration. Note that while similarity
between two sets of activity duration (tH , tW , tS , tO) could be quantified since duration have
the same unit (namely, time unit), it is not clear how similarity between two sets of socio-
economic attributes (e.g., age, gender, etc.) could be quantified since these attributes do not
have the same unit and are not directly comparable. In our model, however, an individual’s
activity duration are themselves deduced from its socio-economic attributes, and so, the activity
duration act as a proxy for the socio-economic attributes. We hence measure the similarity
between two individuals based on the Euclidean distance in the 4-dimensional space, between
their activity duration’ tuples, namely, (tH , tW , tS , tO).

We employ a two-step method to assign the daily activity patterns to the agents. We first
determine candidate individuals in the travel survey and then find the most similar individual
among the candidates using activity duration. Since in our approach, the duration of the four
activity types act as a proxy, and are in a sense, encoding of the socio-economic attributes,
some information is lost during this encoding. It is hence important to specifically ensure that
the two individuals being compared are not very different with regard to their socio-economic
attributes and have the same set of willingness for the activity types. So, for a given agent in
the synthetic population, we consider a set of candidate individuals from the travel survey who
have the same set of willingness for the activity types and have as many similar socio-economic
attributes as possible.

For having as many similar socio-economic attributes as possible, we gradually filter candidate
individuals based on their socio-economic characteristics, while ensuring that the filtered set re-
mains above 50. If after filtering according to an attribute, the size of the candidate individuals’
set falls below the considered threshold, we revert back to the set that was before filtering, and
the obtained set is considered the final set of candidate individuals. Following the creation of
the set of candidate individuals from the survey, for a synthetic agent, we choose the individual
who is the most similar to the considered agent with regard to the Euclidean distance between
their activity duration’ tuples (tH , tW , tS , tO). We then assign to the synthetic agent, the ac-
tivity sequence of the chosen individual from the survey. It should be remembered that the
assigned activity sequences also capture the heterogeneity in the population, as the process of
assigning activity duration capture the heterogeneity in the population, and activity duration
are used as a proxy parameters. To avoid overly complicated and repetitive activity sequences,
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we simplify adjacent activity instances in the assigned sequence. We first deduplicate home,
work, school activity types , that is, if two adjacent activity instances in the sequence are of
the same type, we merge them into one instance of that activity type. For instance, −W -W−
would be converted to −W−. For activity type other, we consider up to 3 consecutive activities,
unlike the deduplication method followed for home, work, and school activities.4

4.4 Activity scheduling

With the duration of the different activity types and the activity sequence at hand, we are
now ready to generate the activity schedule for each agent in the synthetic population. We first
deduce the start and end times of the activity that takes place at 3 AM. Thereafter, we distribute
the total duration of an activity type among its individual instances in the activity sequence,
so as to provide the temporal order of all instances, hence generate an activity schedule. Note
that, we assume the day to start and end at 3 AM, since a minimum number of individuals are
travelling and thus a maximum number of individuals are at an activity at this time according
to the travel survey.

Modeling the start and end times of the 3 AM activity instance accurately is important for a
number of reasons. Firstly, it facilitates the arrangement of remaining activities during a day
using activity sequences and duration, as the head and tail of the sequence is defined. Secondly,
for most individuals, the start time of the 3 AM activity instance would be in the evening and
the end time would be in the morning; so they would help in capturing the morning and evening
peak in traffic patterns.

4.4.1 Concretizing the 3 AM activity

The 3 AM activity type for an agent is directly obtainable from its deduced activity sequence,
as the first/last activity type. Let a3AM denote the 3 AM activity instance and ta3AM be its
duration. Let T sa3AM

and T ea3AM
denote the start and end times of the 3 AM activity instance.

In order to deduce T sa3AM
and T ea3AM

, we first deduce their hourly distributions, using neural
network classifiers (with 24 classes each) trained using the travel survey. On similar lines as the
determining activity duration procedure, we develop different models by activity type using the
travel survey.

For the sampling process, we impose a certain constraint with regard to the amount of time
spent for the 3 AM activity instance. It is clear that the amount of time spent for the 3 AM
activity should not exceed the total duration of the activity type corresponding to the 3 AM
activity. We impose a lower bound such that the mean of the upper and lower bounds equals
the deduced time to be spent for the 3 AM activity instance. Let D(T sa3AM

, T ea3AM
) denote the

amount of time spent for the 3 AM activity instance to be sampled. Since we have already
deduced the total duration of the activity type A3AM, the fraction of the total duration of the 3
AM activity type that is allotted to the 3 AM activity instance can be denoted f3AM =

ta3AM
tA3AM

.

We deduce f3AM by way of regression using neural network trained using the travel survey. To
have a lower bound such that the mean of the upper and lower bounds equals the deduced spent
time for the 3 AM activity instance, we formulate the lower bound as

(
1 − 2(1 − f̂3AM)

)
. We

hence obtain the following constraint:

4It is to be noted that simplification of adjacent activity instances is not a requirement of our method-
ology, but rather a choice we make for our model. In essence, our model considers that if two adjacent
activity instances are of the same type, they are either at the same location (e.g., going for a walk or
a ride and returning to the same place) or the locations are close to each other. This would help our
model be simple enough to analyze, while being detailed enough for modeling mobility.
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(
1− 2(1− f̂3AM)

)
tA3AM

< D(T sa3AM
, T ea3AM

) < tA3AM
(4.2)

We sample the start and end times of the 3 AM activity instance from their corresponding
hourly distributions that we deduced earlier, and add natural idiosyncratic variances to them
to obtain times that satisfy Constraint (4.2). We employ a similar approach as the one for
sampling activity duration while satisfying Constraint (4.1). For the small fraction of agents
whose start and end times of the 3 AM activity instance do not satisfy Constraint (4.2), we
employ a simple heuristic procedure to meet the constraint.

Note also that for the particular case of agents for whom the 3 AM activity type occurs only at
the start and end of the activity sequence (i.e., there is no instance of A3AM apart from a3AM

itself), we need to ensure that D(T sa3AM
, T ea3AM

) equals tA3AM
.

4.4.2 Deducing start and end times of activity instances

Now that we have deduced the start and end times of the 3 AM activity instance, the head and
tail of the activity sequence are concretized. We proceed to present our approach for distributing
the duration of an activity type among its individual instances in the activity sequence, with
the help of a running example of an agent whose activity sequence is H-W -H-W -O-H. Fig. 4.3
present an illustration of the example. Since the activity type at the two extremes (head and
tail) of the sequence is H, the 3 AM activity type is ‘home’. We have deduced the start and
end times of the 3 AM activity instance and so, we know at what times the first home activity
instance ends and the last home activity instance starts.

We now distribute the total duration of each activity type among its different instances in
the sequence. For an activity type that is not the 3 AM activity type (for this example, an
activity type other than home), we distribute its total duration equally among its instances
in the sequence. In the considered example, such activity types are W (work) and O (other).
Since we have 2 instances of work and 1 instance of other activity type, the amount of time
spent for each of the work activity instance is tW

2 and that for the sole other activity instance is
tO
1 . For the activity type corresponding to the 3 AM activity instance (home, in this example),

the amount from the total activity duration that remains after allotting to the 3 AM activity
instance (i.e., tA3AM

− ta3AM , where ta3AM = D(T sa3AM
, T ea3AM

)), is distributed equally among its
instances barring the 3 AM instance. Since we have 1 instance of the home activity type in the
sequence apart from the 3 AM one, the amount of time spent for this home activity instance is
tH−th3AM

1 , where th3AM
is the time allotted to the 3 AM home activity instance.

Our next step is to assign the travel times between adjacent activity instances. Firstly, the daily
travel time could be calculated by subtracting the sum of the total duration of the different
activity types from 24 hours (i.e., tTT = 24 − (tH + tW + tS + tO)). Note that we are now
deducing the daily travel time, while earlier, we had deduced its range in order to feed into
Constraint (4.1). We then distribute this total daily travel time equally across the different
trips in the activity sequence. In the activity sequence of our running example, since we have
a total of 5 trips, the amount of time spent for each of the trips is tTT

5 . It is worth noting
that these are preliminary travel times, and will later be refined based on the assigned activity
locations [10] and using an agent-based transport simulation software such as MATSim.
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Figure 4.3: Activity schedule of an agent with activity sequence is H-W -H-W -O-H.
The daily travel tTT = 24− (tH + tW + tS + tO) .

Now that we have a temporal arrangement of all activity instances within a day for every agent
(that is, the activity sequence along with the start and end times of each activity instance), the
daily activity schedules of all the agents in the synthetic population are ready.
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Chapter 5

Location and Mode Assignment

This chapter describes the methodology for the mode and location assignments for agents’
activities (Fig. 1.1 third box from the top). We first start with home location assignment where
we assign building types and residential locations to the households. This is then followed by
mode and location assignments to all the non-home activities (broadly classified as work, school,
or other activity types). Fig. 5.1 shows a flow chart of activity, mode and location assignment
methodology.

Home locations

Primary activities

Secondary activities

Travel mode assignment

Primary activity location assignment

Secondary activity location
assignment

OD probability matrices

OD probability matrices

Figure 5.1: A flow chart of activity, mode and location assignment Yellow rectangles:
major steps of the activity location assignment methodology; blue rectangles: sub-steps within
the main steps.
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5.1 Home locations

Up till now individuals and households have been synthesized in DeSO zones (See Chapter 3).
In order to maintain the accuracy of the population distribution in the location assignment, we
create smaller zones called ”virtual zones” from the overlap of the two zone systems DeSO and
sq.km. zones.

Let zv denote a virtual zone being the intersection between a DeSO zone and a sq.km. zone. A
building lies in virtual zone zv if and only if its geometrical center lies in sq.km. zone zs 3 zv
as well as in DeSO zone zd 3 zv. Here, zs 3 zv and zd 3 zv denote that sq.km. zone zs and
DeSO zone zd contain virtual zone zv. Let N(zd) and N(zs) denote, respectively, the desired
populations of DeSO zone zd and sq.km zone zs. Let n(zv) denote the deduced number of
agents in virtual zone zv. We iterate over the following sequence of update rules for a fixed
large number of iterations or until a desired level of convergence is reached.

∀zv :

n(zv)←
N(zs)∑

zv′∈zs n(zv′)
n(zv), where zs 3 zv

n(zv)←
N(zd)∑

zv′∈zd n(zv′)
n(zv), where zd 3 zv

Next, in a DeSO zone, we assign to each household a virtual zone by way of multinomial sampling
where the probability of being assigned a virtual zone is proportional to the aforementioned
deduced number of agents in that virtual zone. Let a DeSO zone consists of virtual zones
zv1 , . . . , zvm , and Ph(zvp) denote the probability of a household h in the DeSO zone being
assigned virtual zone zvp .

∀h ∈ zd : Ph(zvp)← n(zvp)∑m
p′=1 n(zv′p)

, where zd 3 zvp (5.1)

With this procedure, the expected number of agents in a virtual zone will be consistent with
the aforementioned deduced number of agents, despite the DeSO zone having households of
various household sizes. This can be shown as follows. Let there be q number of households
in DeSO zone zd with household sizes n(h1), . . . , n(hq). Since Eq.5.1 gives the probability of a
household being assigned virtual zone zvp , the expected number of agents in virtual zone zvp is∑q

j=1 n(hj)Ph(zvp). In addition,

q∑

j=1

n(hj) =

m∑

p′=1

n(zv′p) = n(zd) (5.2)

Eq.5.2 states that the sum of the sizes (number of individuals) of all households in DeSO zone
zd should be equal to the sum of the number of agents in all virtual zones constituting DeSO
zone zd, which is the number of agents in the DeSO zone zd. Thus, the expected number of

individuals in virtual zone zvp is
∑q

j=1 n(hj)Ph(zvp) = n(zd)
n(zvp )

n(zd)
= n(zvp), which is as desired.
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We then proceed to assign a specific residential building to households. The residential buildings
are broadly classified into detached houses, apartment buildings, and buildings of other or un-
known types. A detached house can accommodate one household, while an apartment building
can accommodate multiple households. If there is no apartment building in a virtual zone, we
treat a building of other or unknown type as an apartment building (i.e., it can accommodate
multiple households).5 The average household size for detached houses (2.7) and apartment
buildings (1.9) differ greatly [11]. The correlation between households and types of residence is
established via household size (number of individuals constituting a household) and buildings
are assigned to households in each virtual zone.

5.2 Overview of activity mode and location assignment
This subsection provides an overview of the methodology for work, school, and other activities
travel mode and location assignment. The mode and location assignment begins with OD
probability matrices for assigning modes and locations of primary and secondary activities.
The OD matrix estimation procedures vary by an unique SySMo’s zone system that combines
the zone systems of three models constituting the Swedish transportation model Sampers: the
Väst and Samm regional models and the national model (Section 2.3). These models provide
short and long distance OD matrices by mode of transport and trip purpose (work, bussiness,
other, and private). In the regional models, the zones inside the corresponding region are small,
while being large outside of the region. In the national model, all the zones are moderately
sized. Fig. 5.2 shows the SySMo zone system where the zones are small inside the Väst and
Samm regions, and moderate outside these regions.

Activities are categorized into primary and secondary activities. Primary activities are critical
activities whose locations are determined independently of the locations of other activities except
‘home’ [12, 13, 14]. Such activities comprise of work and school. In activity sequences in which
an agent does not participate any primary activity from a home activity to the next home
activity, ‘other’ activities are also categorized as a primary activity. Secondary activities are
activities between primary activities.6 Their location depend on the location of the primary
activities that are adjacent to them in the activity sequence. For instance, if an agent visits
a shopping center while traveling from work towards home, it is categorized as a secondary
‘other’ activity. The modes we consider in our model are car as driver (car), car passenger
(carP), public transit (PT, which includes buses, trams, and trains), bike, and walk.

For each origin zone and activity type, we deduce the distribution of the modes and destination
zones using one of the following: (a) Sampers OD matrices, (b) IPF, or (c) gravity model. The
methodology consists of different procedures according to origin and destination zones, and the
distance of trips. It is summarised in a schematic form in Table 5.1.

For example, the table entry corresponding to origin zV1 (a zone in the Väst region) and des-
tination zO1 (a zone belonging to neither Väst nor Samm region) are long distance trips from
Väst to Other regions in Table 5.1(i.e., L). The flow for this particular OD pair (shown in
Table 5.2 with the activity type as ‘work’, ‘Starting/ending in Väst/Samm region’ is ‘X’ and
‘Distance class’ is ‘Long’ is obtained by way of IPF using both national and regional models.

The procedures for using Table 5.2 to calculate mode and location assignments are briefly
explained here and will be explained in more details in the sections below.

5This is useful if in a virtual zone the number of households exceeds the number of detached houses
and there is no apartment building to accommodate the remaining households. While this might be rare,
it is important for the model’s completeness sake.

6‘Other’ activities that cannot be categorized as primary activities could be viewed as secondary
activities.
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Figure 5.2: The zone system used in SySMo. Pink: zones according to Väst regional
model, green: zones according to Samm regional model, and blue: zones according to the
national model.

Table 5.1: A schema of short vs. long distance trip definition by SySMo’s zone sys-
tem for work/other trips. The colors correspond to different estimation methods described
in Table 5.2.

S : Short distance trip, L : Long distance trip; For y ∈ { Väst, Samm, and Other }, zones zy1
and zy2 are close to each other, zy2 and zy3 are close to each other, zy1 and zy3 are far from each
other.

Väst Samm Other

zV1 zV2 zV3 zS1 zS2 zS3 zO1 zO2 zO3

V
äs

t

zV1 S S L
zV2 S S S
zV3 L S S

L L

S
am

m

zS1 S S L
zS2 S S S
zS3

L
L S S

L

O
th

er
(O

) zO1 S S L
zO2 S S S
zO3

L L
L S S
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• For the cases where we use the OD matrices directly from the national and Väst and
Samm regional models, the mode distribution as well as the distribution of zones for
activity location (i.e., destination zones) are taken directly from the models. Sampling
from these distributions, we assign mode and destination zone (given the mode used and
travel time) of the activity to each agent.

• For the cases for which we employ IPF, we use the combination of OD matrices from
the regional and the national models for long distance trips at finer zone levels. Once we
obtain the IPF’s output, the distributions over modes and zones for activity locations are
calculated based on the similar procedures previously mentioned.

• For the cases corresponding to primary activity types for which we use gravity model, the
methodology comprises the following steps: mode-based gravity model, mode distribution,
potential mode usage, mode assignment, and destination assignment.

• The cases corresponding to secondary activity types is modelled with a different method-
ological treatment, using a gravity model.

5.3 Primary activities

In this step, we assign the activity location for each primary activity and the travel mode. We
first compute the origin-destination (OD) probability matrices for each activity type and mode.
We then determined the mode of transportation between activities. This is followed by the
activity location assignment at the building level performed by using the agent’s home location,
primary activity type, travel mode, and travel time.

5.3.1 OD probability matrices

The objective of forming OD probability matrices is to deduce the probability of an activity
location being in a zone zD, given the origin (home) zone z, activity type a, and mode m. We
have 15 different types of OD probability matrices by each primary activity type and mode. A
matrix corresponding to activity type a and mode m can be visualized as containing elements
P(zD|z, a,m) in row z and column zD, where z is the origin zone and zD is a candidate destina-
tion zone. By definition,

∑
zD

P(zD|z, a,m) = 1 and so, it is a probability (or stochastic) matrix.
The methodology employed to form OD probability matrices consists of different procedures

Table 5.2: Summary of sampling methods for estimating the flows in the OD
matrices by activity type, starting/ending regions and distance class. The definition
of distance class by starting/ending region for work/trip trips are defined in Table 5.1.

Activity type
Starting/ending
in Väst/Samm
region?

Distance
class

Multinomial sampling

P
ri

m
a
ry

Work /
Other

3
Short Väst and Samm regional models
Long IPF based on the national and Väst and Samm regional models

7
Short Gravity model based on Väst and Samm regional models
Long National model

School 3/ 7 Short Gravity model based on Väst and Samm regional models

S
ec

o
n
d
a
ry

Other 3/ 7
Short /
Long

Gravity-like model using the travel survey
P(k|j, i) ∝ skeβtjk+γtki
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according to origin and destination points, and the trip distance. These procedures can be seen
in the following.

Work/other trip | short distance | Väst or Samm region.
As presented in Table 5.2, we obtain the probabilities for short distance trips that start or end
in Väst or Samm region, using the OD matrices corresponding to the Sampers regional models.
Specifically, if the regional model matrix corresponding to activity type a and mode m is Ma,m

r ,
and its entry corresponding to origin zone zro and destination zone zrd is Ma,m

r (zro , zrd), the
probability is obtained as

P(zrd |zro , a,m) =
Ma,m
r (zro , zrd)∑

zrd′
Ma,m
r (zro , zrd′ )

(5.3)

which forms the entry for origin zone zro and destination zone zrd in the OD probability matrix
corresponding to activity type a and mode m.

Work/other trip | long distance | neither Väst or Samm region.
Concerning long distance trips that neither start nor end in Väst or Samm region, we obtain
the probabilities using the OD matrices corresponding to the Sampers national model. If the
national model matrix corresponding to activity type a and mode m is Ma,m

n , and its entry
corresponding to origin zone zno and destination zone znd

is Ma,m
n (zno , znd

), the probability is
obtained as

P(znd
|zno , a,m) =

Ma,m
n (zno , znd

)∑
znd′

Ma,m
n (zno , znd′ )

(5.4)

which forms the entry for origin zone zno and destination zone znd
in the OD probability matrix

corresponding to activity type a and mode m.

Work/other trip | long distance | Väst or Samm region.
For the long distance trips that start or end in Väst or Samm region, we use iterative propor-
tional fitting (IPF) using Sampers OD matrices from both regional and national models. The
purpose of performing IPF is to combine the long distance trips given in a small-sized zone
within the region in the regional models and in a moderate-sized zones in the national model.

From the regional models corresponding to activity type a and mode m, we know Ma,m
r (zra , zrb)

where either zone zra (a small-sized zone) or zone zrb (a large-sized zone) belongs to Väst or
Samm region. Also, from the national model, we know Ma,m

n (znp , znq) where either zone znp or
zone znq (moderate-sized zones) belongs to Väst or Samm region. The Väst (or Samm) model’s
zones staying within the region Väst (or Samm) are partitions in the national model. Also, the
national model’s zones outside the Väst and Samm regions are partitions in the Väst and Samm
zones. Hence, let zra ∈ znp and znq ∈ zrb . We need to deduce a new matrix whose elements are
Ma,m
s (zra , znq), since zra and znq are the smaller sized zones in their respective regions. Fig. 5.3

presents an illustration of the aforementioned idea. The IPF procedure is initialized as follows:

∀zra , znq : Ma,m
s (zra , znq)← Ma,m

r (zra , zrb)

|zrb |
, where zrb 3 znq . (5.5)
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zra

znp

Ma,m
r (zra , zrb)

Ma,m
s (zra , znq)

Ma,m
n (znp , znq)

znq

zrb

regional model zone

national model zone

Figure 5.3: An abstract illustration of regional and national model zones, and OD
matrices’ values to be used for IPF (arrows point from origin to destination; solid
arrow means that the value is available from Sampers OD matrices; dotted arrow
means that the value is to be deduced)

Here, zrb 3 znq denotes that regional model zone zrb contains national model zone znq , and
|zrb | is the number of national model zones constituting the regional model zone zrb . In order
to deduce Ma,m

s (zra , znq),∀zra , znq , we iterate over the following sequence of update rules for a
fixed large number of iterations or until a desired level of convergence is reached.

∀zra , znq :

Ma,m
s (zra , znq)← Ma,m

n (znp , znq)∑
zra′∈znp

Ma,m
s (zra′ , znq)

Ma,m
s (zra , znq)

Ma,m
s (zra , znq)← Ma,m

r (zra , zrb)∑
znq′∈zrb

Ma,m
s (zra , znq′ )

Ma,m
s (zra , znq) (5.6)

Note that just as we deduce Ma,m
s (zra , znq) using Ma,m

r (zra , zrb) and Ma,m
n (znp , znq), we can

deduce Ma,m
s (znq , zra) using Ma,m

r (zrb , zra) and Ma,m
n (znq , znp). After deducing these new ma-

trices via IPF, we obtain (OD) probability matrices employing a similar method used to create
in the previous procedures.

Work/other trip | short distance | neither Väst or Samm region.
For short distance work and primary ‘other’ trips that neither start nor end in Väst or Samm
region, we use gravity models. We have different gravity models (mode-specific gravity model
[15]) in which the parameters corresponding to each activity type and mode are calibrated
independently using OD matrices from two regional models.

School trips | short distance
In the Sampers model school trips are modelled as other trips and not separately. Parameters
corresponding to school activity are also calibrated using the ‘other’ trips while developing the
gravity model for SySMo, since school trips are integrated into ‘other’ trip in Sampers’ OD
matrices. We thus apply a mode-specific gravity model to all regions for this trip type. In our
model school trips can only be short-distance, unlike other activity types.
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Table 5.3: Gravity model parameters for primary activity types

Activity type Car CarP PT Bike Walk

Work −0.14 −0.14 −0.08 −0.59 −1.67

School, Primary Other −0.21 −0.21 −0.12 −0.93 −2.10

Gravity model We apply an exponential decay function in the model presented in Equation (5.8).
It has been observed that the gravity models with exponential decay in the distance capture
short distance trip distributions very well [16]. Let P(zd|zo, a,m) denote the probability that
an agent’s activity location is zd, given that its home location is zo, activity type is a, and
mode used is m. In what follows, let the parameter corresponding to activity type a and mode
m be denoted by βam. Let d(zo, zd) denote the spherical distance between zones zc and zb; we
define d(zo, zo) to be the radius of zone zo. Let sazd denote the attraction potential of zone zd for
activity type a. sazd could be simply assumed to be equal to the population of zone zd. With all
the variables defined, the gravity model in its probabilistic form can be expressed as:

P(zd|zo, a,m) ∝ sazde
βa
md(zo,zd) (5.7)

=
sazde

βa
md(zo,zd)

∑
z s

a
ze
βa
md(zo,zd)

(5.8)

Table 5.3 presents the calibrated values of the parameters. A more negative value of parameter
βam means that the probability drops rapidly with an increase in distance. We see that across
all modes, the values of parameter βam for school and primary ‘other’ activity types are more
negative than for work activity type. Also, across all the presented activity types, the value of
βam for walk is more negative than that for bike, followed by that for car and carP, while the
value for PT is the least negative.

Once the preliminary probabilities are obtained using the above procedure, they could be fine-
tuned with the help of additional data. For instance, we fine-tune the probabilities corresponding
to work activity type with commuting data at the municipality level, that is, the number of
individuals that reside in a given municipality and commute for work to a given municipality.
We do this by way of IPF. Let Nw(zMo , zMd

) be the desired number of individuals that reside in
municipality zMo and work in municipality zMd

. Also, let N(z, w,m) be the number of agents
in zone z who use mode m for activity type w (work) such that it belongs to the short distance
class. This is easy to deduce since we know the total number of agents in zone z who use mode
m for activity type w as well as the number of agents (in zone z who use mode m for activity
type w) for whom the home-work distance belongs to the long distance class (provided by the
long distance OD matrices obtained either directly from Sampers or by way of IPF). LetM be
the set of all modes. In order to fine-tune the probabilities corresponding to work activity type
using the commuting data at the municipality zonal level, we iterate over the following sequence
of update rules for a fixed large number of iterations or until a desired level of convergence is
reached.
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∀zo, zd,∀m ∈M :

N(zd|zo, w,m)← N(zo, w,m) · P(zd|zo, w,m) (5.9)

N(zd|zo, w,m)← N(zd|zo, w,m) · Nw(zMo , zMd
)∑

m∈M
∑

zc′∈zMo

∑
zb′∈zMd

N(zb′ |zc′ , w,m)
, (5.10)

where zMo 3 zo, zMd
3 zd

P(zd|zo, w,m)← N(zd|zo, w,m)∑
zb′
N(zb′ |zo, w,m)

(5.11)

Eq. 5.9 gives the number of agents whose work location is in zone zd given that their home is in
zone zo and they use mode m for work trip, for each zd, zo,m, by multiplying the corresponding
probability with N(zo, w,m). Letting zMo and zMd

to be the municipalities containing DeSO
zones zo and zd respectively, Eq. 5.10 scales the obtained numbers N(zd|zo, w,m),∀zo, zd, ∀m ∈
M such that they are consistent with the desired number of individuals that reside in mu-
nicipality zMo and work in municipality zMd

. Eq. 5.11 transforms the obtained numbers into
probabilities.

5.3.2 Travel mode assignment

We assign the modes to each trip occurring between activities in each agent’s activity schedule
in three-step: mode distribution, potential mode usage, and mode assignment.

Mode distribution. For the cases in Table 5.2 using the OD matrices that are either directly
provided by the regional and national models or by way of IPF (the rows coloured green, blue
and yellow in the table), we obtain the mode distribution using the matrices from the models
directly. On the other hand, for cases using the gravity models, we employ the methodology
further described below.

From the travel survey, we obtain the zone-specific mode distributions for each activity type. In
order to ensure that we have sufficient number of data points for each zone and activity type,
we calculate the mode distribution at the county level. We then make a simplified assumption
that the mode distribution for a given activity type for a given DeSO zone is same as for the
county the DeSO zone is a part of (Deso zones are subdivision of counties).

Potential mode usage. Once we deduce the number of agents in a given zone that use a given
mode for reaching the location of a given activity type, we then determine the corresponding set
of agents. For instance, two agents residing in the same zone may have different probabilities
of using a car for going to work (depending on their ages, income, etc.). In order to make this
distinction, we introduce the concept of potential mode usage of an agent, and define it to be
the probability distribution over the usage of the different modes.

We use a neural network classifier trained on the national travel survey for deducing the potential
mode usage of the agents. Since we consider 5 modes, and each mode could be either used or
not, we have a total of 25−1 = 31 classes (excluding the class signifying that none of the modes
are used). Once we deduce the probabilities of belonging to the different classes for each agent,
we obtain the probabilities of using the different modes. If each of the 31 classes represents a
set of modes being used, and if Pi(c) is the probability of an agent i belonging to class c as per

the classifier, we obtain the probability of using mode m as Pi(m) =
∑

m3c
Pi(c)
|c| .

Since the mode usage behavior of individuals would generally depend of their travel times, we
consider different classifiers for different travel time classes. Furthermore, we assign an agent
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zero probability of using a particular mode if the agent does not qualify to use that mode for
traveling, in general, and hence redistribute the probability equally over the modes that the
agent is qualified to use. For instance, we assign the probability of an agent using a car as a
driver to be zero if the agent does not have access to a car or is less than 18 years old.

Mode assignment. Now that we know the number of agents in a given zone that use a given
mode for reaching the location of a given activity type as well as the potential mode usage of
each agent, we proceed to deduce the mode that an agent would use for reaching the location
of the given activity type.

We first deduce the probability of an agent i using mode m, given that the agent resides in
zone z and the activity type under consideration is a; let this be denoted by Pi(m|z, a). We
utilize the IPF technique, with the initialization value being Pi(m) that is obtainable from the
agent’s potential mode usage. Let S(z, a) be the set of agents with home location in zone z and
involved in activity type a, let N(z, a,m) be the number of agents in zone z who use mode m for
the activity type a, and let M be the set of all modes. We iterate over the following sequence
of update rules for a fixed large number of iterations or until a desired level of convergence is
reached.

∀z, a,∀i ∈ S(z, a) :

Pi(m|z, a)← N(z, a,m)∑
j∈S(z,a) Pj(m|z, a)

Pi(m|z, a) (5.12)

Pi(m|z, a)← Pi(m|z, a)∑
m′∈M Pi(m′|z, a)

(5.13)

Eq. 5.12 drives the values Pi(m|z, a) such that the expected number of agents using a given
mode for a given activity type starting from a given origin zone, is approximately equal to
the desired number of agents using that mode for that activity type starting from that origin
zone. Equation (5.13) is the normalization step ensuring that the obtained values are indeed
probabilities, that is,

∑
m′∈M Pi(m′|z, a) = 1. The final step in mode assignment is multinomial

sampling of the mode from the deduced values of Pi(m|z, a),∀m ∈ M. Thus, we deduce the
mode used for reaching the locations of all of the primary activities.

We assume that an agent uses the same mode for all trips between home departure and the
immediate next arrival at home. For example, if an agent’s activity sequence contains multiple
primary activities in the interval between the departure and arrival to home activity (e.g., −H-
W -S-H−), we want to ensure that a common mode is used for reaching the locations of primary
activities between the home activities.

5.3.3 Activity location assignment

We assign activity location for each individual agent’s activity, first at the zone level and then
at the building level. To deduce zones, given a primary activity, we first have the deduced
N(z, a,m) – the number of agents residing in zone z who use mode m corresponding to that
activity. Also, we have the deduced P(zD|z, a,m) – the probability that an agent residing in
zone z travels to zone zD for activity a given that it uses mode m corresponding to that activity.
We can thus deduce the number of agents residing in zone z who use mode m corresponding to
a given primary activity a, and who travel to zone zD for the given activity. Let this quantity be
denoted by N(z, a,m, zD), and it can be deduced by independently drawing N(z, a,m) samples
from the multinomial distribution given by P(zD|z, a,m). Note that as before, here a refers to
activity types work and school and primary ‘other’.
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In order to assign the destination zone corresponding to a primary activity for each individual
agent, we follow a simple rule that, given a set of agents residing in a given zone and using a
given mode corresponding to a given primary activity type, agents with a higher travel time
per leg are assigned farther destination zones. This rule, by way of ordering, ensures that the
correlation between travel times and travel distances is accounted for. For instance, if two
agents reside in the same zone and use the same mode ‘Car’ for travelling to work, and if the
travel time per leg for the first agent is higher than that for the second agent, then the first
agent travels to a destination zone that is at least as far away as or further from the destination
zone of the second agent.

While assigning the location for each primary activity of each agent at the level of zones (which
are very fine) would suffice for most applications, certain applications (e.g., routing) may ne-
cessitate location information that is more spatially precise. Hence, we assign a building for
the location of each activity. Recall that using our buildings’ data, we can deduce the set of
buildings that correspond to a given activity type in a given zone. In order to assign a building
corresponding to each activity of each agent, we employ a simplified approach in our model –
given an activity and its location at the zonal level, assign a building uniformly at random from
the set of zones corresponding to that given activity type in the given zone.

5.4 Secondary activities

We assume that the trips to secondary activities use the same mode of transportation as the
adjacent primary activities. For the location assignment of secondary activities, we employ an
adapted form of the gravity model. Since a secondary activity’s location depends on primary
activities, we assign the secondary activity location using the location of an activity preced-
ing and succeeding in the activity sequence. These two activities (reference points) are not
necessarily adjacent to the secondary activity.

The adapted gravity model has two parameters corresponding to the distances of the secondary
activity location from the two reference points. We calibrate these parameters using the national
travel survey. As each of the two reference points could correspond to one of the activities {home,
work, school, other}, we could potentially have 42 = 16 different gravity models for each of the
5 modes for a total of 80 different gravity models. This is an unreasonably large number of
models to be calibrated using travel survey which typically presents a very limited number
of intermediate ‘other’ activities. In order to reduce the number of gravity models, we group
the intermediate ‘other’ activities into 3 broad types (see Table 5.4, out of which type HOH
captures dedicated ‘other’ activities) and the modes into 2 broad types (namely, motorized and
non-motorized), thus resulting in a total of 6 gravity models.

5.4.1 Reference activities

In our procedure, each type of ‘other’ activity have a defined level of priority. We assign the
locations of the ‘other’ activity instances based on their priority, that is, we assign the locations
of the highest priority instances first and that of the least priority instances last. Table 5.4
shows the classification of ‘other’ activities in descending order of their priorities. As discussed
earlier, a primary ‘other’ activity assigned locations holds the highest priority among all the
‘other’ activity types; we denote it by HOH. The next priority is for an ‘other’ activity that
is visited between two activities belonging to set {home, work, school}, where not both the
primary activities are ‘home’. If one of the primary activity is ‘home’, we denote it by HOX,
otherwise we denote it by XOY . The least priority is for an ‘other’ activity that is visited
between an activity belonging to set {home, work, school} and another instance of ‘other’
activity; we denote it by XOO. In the column showing the considered types, the second letter
represents the ‘other’ activity under consideration for which we aim to assign the location, while
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Table 5.4: An overview of our approach for deducing locations of different types of
‘other’ activities According to the considered secondary activity, the previous activity type
in the sequence (p1), the previous to previous activity type (p2), the next activity type (n1),
the next to next activity type (n2)), and finally the columns (A1 ref and A2 ref) determining
activities whose locations are used as references to deduce the location of the secondary activity.

type p2 p1 n1 n2 A1 ref A2 ref

HOH
− H H − - -
− H O H - -
H O O H - - *

HOX

H O O W/S p2 n2 *
W/S O O H n2 p2 *
− H W/S − p1 n1
− W/S H − n1 p1
− H O W/S p1 n2

W/S O H − n1 p2

XOY
W/S O O W/S p2 n2 *
− W/S W/S − p1 n1
− W/S O W/S p1 n2

XOO

H O H − n1 p1
W/S O W/S − n1 p1
H O W/S − n1 p1
− W/S O H p1 n1
− H/W/S O O p1 n1
O O H/W/S − n1 p1 #

the first and the third letters represent the reference activities (based on whose locations, the
location of the considered ‘other’ activity would be determined).7

The motivation to formulate a set of rules for classifying the different ‘other’ activity instances
and for determining the two reference activities is the folllowing. Say we have a sequence −H-
O-O-W−. If we classify both these instances as HOX, the reference points for assigning the
locations of both the ‘other’ activity instances would be that of home and work. So, conditional
on these reference points, the locations of the two ‘other’ activity instances would be assigned
independently of each other; this is unreasonable since they are adjacent activities. It is hence
important that one of the ‘other’ activity instances is classified as HOX and the other one as
XOO. The instance that is classified as HOX is assigned a location based on locations of home
and work (as they are the reference points). Following this, the instance classified as XOO is
assigned a location based on the location of the ‘other’ activity instance that is already assigned
a location, and the location of either home or work.

5.4.2 Adapted gravity model

To deduce OD probability matrices for the secondary activities, we consider two reference
locations, namely, a preceding activity location and a subsequent activity (say, A1 and A2)
location in the activity sequence. Let P(zb|zA1 , zA2 ,m) denote the probability that an agent’s
secondary activity location is zb, given that the locations of the two reference activities are
zA1 and zA2 , and the mode used is m. As earlier, let d(zb, zc) denote the spherical distance

7Recall that we consider a maximum of 3 consecutive instances of ‘other’ activity type in an agent’s
activity sequence. From Table 5.4, if we have a maximum of 3 consecutive ‘other’ activity instances, the
classification of ‘other’ activity instances into {HOH,HOX,XOY,XOO} is indeed mutually exclusive
and exhaustive.
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between zones zb and zc, where d(zb, zb) is defined to be the radius of zone zb. Let the gravity
model parameters corresponding to the distances relative to locations zA1 and zA2 be β1m and
β2m respectively. Let sozb denote the attraction potential of zone zb for the ‘other’ activity type.
On similar lines as [14], the gravity model for secondary activities can hence be expressed as:

P(zb|zA1 , zA2 ,m) ∝ sozbe
β1
md(zb,zA1

)+β2
md(zb,zA2

) (5.14)

=
sozbe

β1
md(zb,zA1

)+β2
md(zb,zA2

)

∑
z s

o
ze
β1
md(z,zA1

)+β2
md(z,zA2

)
(5.15)

Note that in order to employ the above model, it is necessary to know the locations zA1 and
zA2 of the reference activities.

We calibrate parameters β1m and β2m of the adapted gravity model, using the national travel
survey. As discussed earlier, we group the modes into Motorized (Car, CarP, PT) and Non-
Motorized (Bike, Walk), in order to not have an exceedingly large number of gravity models.

As data for calibration, we consider all activity subsequences in the travel survey correspond-
ing to types {HOX,XOY,XOO} presented in Table 5.4 where the mode used throughout the
subsequence is either entirely Motorized or entirely Non-Motorized. For a given subsequence,
if a reference activity is adjacent to the ‘other’ activity instance under consideration, the cor-
responding distance between the location of the instance and that of the reference activity can
be directly obtained from the travel survey. However, if a reference activity is not adjacent to
the ‘other’ activity instance under consideration, this implies the existence of another activity
in-between the given instance and the reference activity. In this case, the distance between
the location of the instance and that of the reference activity is computed as – the sum of the
distances of the locations of the instance and the reference activity, from the location of the
in-between activity.

Table 5.5: Gravity model parameters for secondary activity types

Other (intermediate) type
Motorized Non-Motorized
β1m β2m β1m β2m

HOX −0.10 −0.07 −0.38 −0.34

XOY −0.07 −0.13 −1.22 −1.15

XOO −0.08 −0.10 −0.46 −0.60

Table 5.5 presents the calibrated values of the parameters. It can be understood from Eq. 5.14
that a more negative parameter value would mean that the probability to travel drops rapidly
with an increase in the corresponding distance. One of the most obvious observations from the
table is that the parameter values corresponding to the Non-Motorized mode type are more
negative than those corresponding to the Motorized mode type. This is natural since when
using a Non-Motorized mode, it is likely that the location of the secondary activity is more or
less ‘on the way’ while moving from one reference location to the other; the deviation taken
from the shortest path is likely to be much less as compared to the deviation taken when using
a Motorized mode. It is also interesting to understand the implications of the parameters’
values for the different types of ‘other’ activities. For type HOX for both mode types, we can
see that parameter β1m (corresponding to distance from home location) is more negative than
β2m (corresponding to distance from work/school location). This implies that when choosing a
secondary activity location between home and work/school locations, its distance from home is
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given a higher weight by a typical agent, and it is likely that the location is close to the agent’s
home.

We now describe how we employ the calibrated gravity models for assigning locations to sec-
ondary activities. The number of probability quantities is quadratic in the number of zones for
the standard gravity model, whereas the quantities that we need to compute would be cubic
for the adapted gravity model 8, since we have two reference locations and one location to be
assigned in the adapted model. This would result in a computational complexity that is in-
tractable in terms of both time and space. So, unlike the standard gravity model, we cannot
consider all possibilities, and in fact, it is clear that we need not consider all possibilities.

We only consider pairs of reference locations that are visited according to the agents’ activity
sequences, while applying the adapted gravity model. Note that among all possible pairs of
reference locations, only a very small fraction would actually be seen according to the agents’
activity sequences. Furthermore, we consider that a secondary activity should be at a certain
distance from the reference points. For instance, if the reference locations are very close to
each other, it is with almost sure that the location of the secondary activity is also close to
them. This assumption thus decreases the number of possible candidate zones for a secondary
activity’s location. In our model, we employ this by considering only those candidate zones for
secondary activity location which satisfy the following: the distance between the first reference
zone and the candidate zone is within a certain multipleM (we considerM = 2) of the distance
between the first reference zone and its corresponding furthest second reference zone. Say that
an ordered pairs of reference zones (zA1 , zA2) ‘exists’ if and only if it is applicable to the activity
sequence of at least one agent according to Table 5.4. So, if ρ is the set of all ordered pairs of
reference zones, which exist, given the first and second reference zones zA1 and zA2 , we consider
a zone zb as candidate zone only if:

d(zA1 , zb) ≤M · max
zA2

: (zA1
,zA2

)∈ρ
d(zA1 , zA2) (5.16)

These reductions result in the number of probability entries that need to be computed, to be
brought well within the tractability limits of modern day computers.

Using Eq. 5.15, ∀(zA1 , zA2) ∈ ρ, ∀m, and ∀zb satisfying Equation (5.16), we can now obtain
P(zb|zA1 , zA2 ,m): the probability that an agent’s secondary activity location is zb, given that
the locations of the two reference activities are zA1 and zA2 , and the mode type used is m.

5.4.3 Zone and building assignment of secondary activities

For assigning zone corresponding to a secondary activity, we adapt the same rule as the primary
activity – agents with a higher travel time per leg are assigned zones whose sum of distances
from the given reference zones is larger. Following zone assignment, the building assignment of
secondary activities follows exactly the same procedure as that of primary activities.

8To give an idea of this in the context of our model, the number of zones is in the order of 104

approximately. The number of all possible pairs of reference locations at the granularity of zones is
hence in the order of 108. For each pair of reference locations, each zone would have a computed
probability of being assigned a location for the considered secondary activity. This results in the number
of probability entries being in the order of 1012.
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Chapter 6

Model Evaluation and Assessment

In this chapter, we present the assessment of model performance and validity of the SySMo
model. We first perform in-sample evaluations showing the similarity of the results with the
input data used to construct the model. Second, out-of-sample evaluations are performed by
comparing the model outputs with data never used in the SySMo model. We also evaluate the
performance of the ML technique, neural networks used in various steps in the methodology.
These assessments present how well the ML technique performs with data sharing the same
structure as the used data in SySMo to make predictions such as activity participation or ac-
tivity duration. Table 6.1 shows for which steps of SySMo these were used. The comparisons
made to validate the model include both independent distribution and dependent(joint) distri-
butions such as agents’ attributes and their activity duration. In SySMo, we adopt a sequential
modelling approach in which the features regarding the personal characteristics or the activity
schedules are deduced in different steps, instead of jointly deducing them. E.g the activity types
are determined first, and then activities’ duration. In order to understand to what extent the
model maintains the correlation between the separately deduced features, the comparison over
joint classes is important. In summary, we perform the following evaluations measures:

• Population synthesis

– Errors in number of individuals with respect to 1) basic attributes (age, gender) in
DeSO zones, 2) advanced attributes (employee, car ownership) in DeSO zones, and
3) joint classes in municipalities

– Disparity between Household size and SCB data

• Activity generation

– Distribution of activity durations

– Distributions of activity start and end times

• Mode and location assignment

– Comparison of total distance travelled (vs. Trafikanalys model)

– Comparison of daily total travel distance (vs. Sampers model)

6.1 Population Synthesis

In the step of population synthesis (chapter 3), we combine ML, IPF, and sampling to create
the static synthetic population. This section presents the model evaluation on this step, where
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Table 6.1: Performance assessments

Steps
Evaluation types

ML performance In sample Out of sample
Population synthesis X X
Activity generation X X

Mode and location assignment X X

the created population is validated against data from Statistic Sweden (SCB, Chapter 2). We
calculate the percent difference in the number of individuals with respect to different attributes
(age, gender or car ownership) in each DeSO zones and the distribution of the mean-square
error (RMSE). To evaluate the performance of the home location assignment (section 5.1), we
compare the household sizes in the SCB statistics with the generated synthetic population.

Basic attributes

For gender (Fig. 6.1), the error is between -0.5% and 0.5% in more than 92 percent of the DeSO
zones. We find the RMSE = 2.1.

(a) Gender (b) Age groups

Figure 6.1: The percent error in the number of individuals by gender(a) and age
groups(b).

For age (Fig. 6.1), the error is between -1% and 1% in more than 78 percent of the DeSO zones.
We found the RMSE to be 0.65. This indicates that 0.65 people in each Deso zone may have
been assigned an incorrect age group. 9

Advanced attributes

The advanced attributes are predicted using the assigned basic attributes (See Section 3). For
the percent error in the number of employees (Fig. 6.2 a), the error is between -3% and 3% in
more than 55 percent of the DeSO zones. The RMSE is 26.63, indicating that 26.63 people in

9The considered age groups in SySMo: 0, 1-6, 7-15, 16-18, 19-24, 25-29, 30-34, 35-44, 45-54, 55-64,
65-75, 75-84, 85+
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each DeSO zone (populating an average of 1.706 people in each zone) may have been assigned
an incorrect work status. Since it is a secondary attribute, i.e. derived based on the basic
attributes, the error is expected to be higher.

(a) Employees (b) Cars

Figure 6.2: The percent error in the number of employees in each DeSO zones(a)
and the percent error in the number of cars in each DeSO zones(b).

For the percent error in the number of cars in each DeSO zones (Fig. 6.2 b), the error is between
-3% and 3% in more than 76 percent of the DeSO zones. We find an RMSE of 17.47, indicating
that our estimated number of vehicles in each DeSo zone can deviate roughly by 17.5 vehicles.

Attributes over joint classes

For this part of evaluation, we calculate the percent error in the number of individuals by gender
and age in each municipality. It is observed that the error is between -8% and 8% in more than
60 percent of the municipalities and RMSE is 140.31. The error is expected to be higher in this
case, since it is calculated over joint classes and at the municipal level.

Figure 6.3: The percent error in the number of individuals by gender and age.
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Household size

The home location assignment is the first step of the location and mode assignment (Chapter
5) where all activities are assigned to locations. In this step, we assign each household a specific
residential building with a building type (e.g., detached house or apartment building). Since
the home location assignment is correlated with household size and households are generated in
population synthesis step, we place the household size evaluation here. In order to evaluate the
performance of this step, we compare the household sizes of the synthetic population against
national-level SCB statistics[11]. In SySMo, household size is an important parameter as it
maintains the correlation between households and types of residence such as detached house or
apartment building. The comparison suggests that our model produces similar household sizes
to the official statistics (Table 6.2 ).

Table 6.2: Household size by dwelling types for Sweden

Dwelling Type Synthetic Population SCB Data
Overall average 2.2 2.2
Detached houses 2.7 2.7
Apartment buildings 1.8 1.9

Table 6.2 depicts a comparison of household size by different dwelling types from the synthetic
population developed in the frame of SySMo to SCB statistic. The overall average household
size is calculated as 2.2 persons per household in the synthetic population and the figure is
the same as the statistics. The average household size living in a detached house in Sweden is
2.7 people per household, and we also capture the same number in the synthetic population.
The average household size living in an apartment is slightly lower than that of a detached
house, with 1.9 persons per household, while the average of 1.8 persons is found in the synthetic
population.

6.2 Activity Generation

In this section, we focus on the evaluation of the activity generation step. First we evaluate
the performance of the ML models used to generate the activity schedules. We employ a
stratified cross-validation method through the Brier skill score. Following this, we compare the
outcomes of the activity generation step regarding activity features with the travel survey. This
assessment step can be categorised as in-sample evaluation. We calculate the Hellinger distance
and Jensen–Shannon(JS) distances to assess the similarity between the distributions of activity
duration and start-end time of the two datasets.

6.2.1 ML models evaluation

ML models in SySMO refer to a series of probabilistic machine learning methods applied in the
step of activity generation (Section 4). They give probability distributions of class memberships
instead of assigning a particular class label. To evaluate their performance, we first compare
the output from the probabilistic ML models against the travel survey. Given the produced
probability distributions are about class memberships, complex measures are needed to interpret
and evaluate predicted probabilities. Brier Score (BS) is one of the metrics frequently used to
measure the accuracy of probabilistic predictions [17]. The original definition of BS is applicable
to multi-class problems by the formula set out as:
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BS =
1

N

N∑

t=1

R∑

i=1

(fit − oit)2 (6.1)

where fit denotes predicted probability, while oit is the actual outcome at the instance it. R
denotes the number of possible classes, N is total number of samples in all classes. BS always
takes on values in the range [0,1], where 0 means a perfect score. The results produced by the
Brier Score can be very difficult to interpret when the classes are imbalanced. Brier skill scores
(BSS) are calculated to validate ML models used in the activity generation step. BSS gives a
score by comparing the BS with a reference measure. The most common formulation:

BSS = 1− BS

BSref
(6.2)

BSS gives a value between −∞ and 1 by comparing the Brier score with a reference measure
BSref such as a naive model having a constant probability distribution, that shows densities of
classes in the dataset for each sample in the dataset. 10 A score of 0 means the model results
are identical to a naive model, whereas 1 is the best possible score meaning that predictions are
identical to the data compared. A score below 0 means the results are worse than the scores
calculated from the naive model. We do the evaluations for all ML models that are used to
generate the activity pattern.

We employ the k-fold cross-validation method to evaluate our ML models with Brier scores. In
the machine learning field, K-fold cross-validation is a widely used resampling method which
divides all samples to fit a model and to measure the performance of the fitted model [18]. It
works with the principle of dividing the data into a certain equal number of parts and using
1 part of it for scoring the model each time. In our evaluation step, we use the stratified
cross-validation variation that maintains the distribution of the labels in each fold.

Probability of participating in work, school and other activities

Four ML models are created by status (employment = 0/1 and student = 0/1) (Section 4.1).
For each model, we calculate BSS the predicted probability for joining work (W), school (S),
and other (O) activities using the evaluation data and the predicted data. Table 6.3 presents
the BSS scores from these four models. All BSS scores are above 0 except the model including
only student status as positive (E = 0, S = 1) which has slightly lower accuracy than the naive
model. This may be due to the definition of students being very broad and that these people
could have very flexible schedules which are more difficult to model. The average BSS is 0.3067,
and the weighted average BSS by people in each group is 0.1320.

Duration of work, school and other activities

SySMo has seven separate ML models by the participation sets of W, S, and O activity. A
set of activity participation is denoted S, where W,S,O ∈ {0, 1} and S \ {0, 0, 0}. For each

10E.g. let consider a multi-class dataset of 100 samples with 3 different labels. if the labels distribution
is 20, 10, 70, respectively the 1st 2nd, and 3rd label, the naive model will be such that it preserves the
labels’ distribution by sampling. That is, the classes values of the naive model will be 0.2, 0.1, 0,7,
respectively and it repeats the given number of samples.
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Table 6.3: Brier skill scores for probability of participating in work, school, and
other activities by employment (E) and student (S) status. A scores 0 means being
identical to the naive model, whereas 1 is the best possible score. A score below 0 means worse
scores than the scores calculated from the naive model.

Status Percentage of pop. (%) BSS Standard dev.
E = 0, S = 0 21 0.2770 0.0307
E = 0, S = 1 21 -0.0516 0.1764
E = 1, S = 0 55 0.1020 0.0138
E = 1, S = 1 3 0.8995 0.0041

model, BSS measures the similarity of the predicted duration (in broad categories, see below)
for W, S, and O between the evaluation data and the predicted data. The scores are reported
in Table 6.3. All BSS scores are above 0, and some models scores such as (W = 0, S = 1, O
= 1) are close to 1, the best possible score. The average BSS is 0.5528, and the average BSS
weighted by people in each group 0.2682.

The broad duration classes for the activities are: Home = 0-12h, 12-18h, 18-24h; Work = 0-6h,
6-10h, 10-24h; School = 0-6h, 6-8h, 8-24h; and; Others = 0-2h, 2-5h, 5-24h (See more in Section
4).

Table 6.4: Brier skill scores for assessing the model performance on estimating the
broad duration classes in work (W), school (S) and other (O) activity

Activity participation Percentage of pop. (%) BSS Standard dev.
W = 1, S = 0, O = 0 38.1 0.1848 0.0156
W = 0, S = 1, O = 0 10.7 0.5585 0.0234
W = 1, S = 1, O = 0 7.2 0.6645 0.0219
W = 0, S = 0, O = 1 22.7 0.3933 0.0515
W = 1, S = 0, O = 1 21.0 0.0899 0.3003
W = 0, S = 1, O = 1 0.2 0.9953 0.0015
W = 1, S = 1, O = 1 0.1 0.9831 0.0031

6.2.2 Activity duration and start-end time distributions

One of the main outcomes of the activity generation step is the activity duration and the start-
end time (See Section 4). We evaluate these outcomes against the travel survey by measuring
the distance between the probability distributions of the model and the survey. Many different
measurement methods can be seen in the literature, but the Kullback-Leibler divergence and
squared Hellinger distance are one of the most prominent of these [19]. Therefore, we choose
the Hellinger distance and a variation of Kullback-Leibler divergence that is Jensen–Shannon
(JS) distance to perform the evaluations.

The probability distributions that we want to compare are p and q. We define the Hellinger
distance as the Euclidean norm of the difference of the square root of p and q (

√
p and

√
q

respectively) divided by the square root of two (Equation (6.3)). The Hellinger distance always
takes on values in the range [0,1], where 1 is the maximum distance.
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H(p, q) =
1√
2
‖√p−√q‖2 (6.3)

We utilise JS distance to evaluate the model’s results. Kullback-Leibler divergence is a statis-
tical distance but it does not qualify as a metric. Since it lacks properties of being a metric
such as symmetry between each pair of points (D(p, q) == D(q, p)). JS is a symmetrized
and smoothed variation of Kullback-Leibler divergence [20]. To calculate the JS distance, we
deduce the Kullback-Leibler divergence at first. From the KL divergence the JS distance can
be calculated with Equation (6.4). The distances have values in the range [0,1], where 1 means
the maximum distance.

KL(p, q) =




p log(p/q)− p+ q p > 0, q > 0
q p = 0, q ≥ 0
∞ otherwise





JS(p, q) =

√
KL(p,M) +KL(q,M)

2

(6.4)

For this example, M is the mean of p and q and KL(p, q) is the Kullback-Leibler divergence.
We use the scipy library implementation of the distance KL(p, q) ([21]) in the evaluations.

Activity duration distribution by activity type

In order to evaluate the model performance, we compare the distributions of activity duration
by activity type derived from the model output and the travel survey (e.g., Fig. 6.4).

The shorter the distance (close to 0), the closer the two distributions are to one another. We
calculate the Hellinger and JS distance between the two distributions of work activity duration
to 0.1054 and 0.1260 respectively. Although the calculated values for school are slightly higher
than for work (0.1378 and 0.1645 respectively) they are is still quite close to zero.

Distribution of activity duration by activity type and personal attributes

Next we evaluate the activity duration distributions over the joint classes of activity type and
personal attributes (Fig. 6.5 and Fig. 6.6). Besides measuring similarities between the distri-
butions, we also evaluate to what extent the model maintains the correlations between outputs
from the different steps. First, we compare the activity duration distributions by activity type
and gender, one from SySMo and the other from the travel survey. Fig. 6.5 shows these two
distributions. The Hellinger, and JS distances between work activity duration distributions are
0.1058 and 0.1260 respectively for males, and 0.1245 and 0.149 for females .

Fig. 6.6 illustrates activity duration distributions by home activity type and income levels.
The population is divided into five income groups: no, low, lower middle, upper middle, and
high. While the Hellinger distance between work activity duration distributions of the low-
income group is 0.1396, and JS distance is 0.167, the distances between work activity duration
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Figure 6.4: Comparison of activity duration by activity type.
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distributions of the upper-middle-income group are 0.1353 and 0.1131, respectively. It is worth
noting that the survey population contains mostly individuals having some activities during
a day and has much fewer persons with no activity and staying in their homes all day. In
contrast, SySMo also models these individuals having very high home activity duration to cover
the entire population. To make two data with different numbers of samples comparable, we
use densities instead of exact values in the y-axis for each bin in the histograms. A very high
density for the bin corresponding to the population who spent 24 hours at home in the synthetic
population results in lower densities being calculated for all the other bins. The small differences
in the density values corresponding to the bins showing less than 24-hours spent at home can
be explained by the used density-based representation.

Figure 6.5: Comparison of activity duration by activity type and gender.

Distribution of activity duration by activity type and willingness to partici-
pate

We also evaluate the model performance on the distributions of activity durations over the joint
classes activity type and activity participation of agents. Fig. 6.7 shows the duration of ’other’
activity by whether or not participating in work activity. Since more than 99 percent of the
sub-populations have less than 12 hours of other activity duration, we limit the x-axis to 12
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Figure 6.6: Comparison of activity duration by activity type and income group.

hours in the illustration. The Hellinger distance between other activity duration distributions
for those participating in a work activity is 0.1990 and the JS distance is 0.1679. For those
not participating in a work activity during the day, the Hellinger distance for other activity
duration distributions is 0.2351 and the JS distance is 0.1986.

Start-end time distribution by activity type

Fig. 6.8 shows the end time distribution of the home activity instances, which take place at
midnight (03:00). The Hellinger distance and JS distance are 0.0732 and 0.0876, respectively.

Start-end time distribution by activity type and activity participation

In this part, we evaluate the model’s performance of the distribution of the start or end time of
an activity over the joint classes of activity type and activity participation. Fig. 6.9 contains
two panels. In the top panel: the distribution of the end time of the home activity, taking place
at midnight (03:00), for the population participating in a work activity. For these distributions,
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Figure 6.7: Comparison of activity duration by activity type and activity partici-
pation.

Figure 6.8: Comparison of activity end time distribution by activity type.

the Hellinger distance is 0.0993 and the JS distance is 0.1188. The bottom panel presents the
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distribution of the end time of the home activity, which takes place at midnight (03:00), for the
population who only participate in an other activity. The Hellinger distance is 0.0847 and the
JS distance is 0.1012 for these distributions.

Figure 6.9: Comparison of activity end time distribution by activity type and
activity participation.

6.3 Mode and Location Assignment
This section presents the evaluation of mode and activity location assignment. It is very difficult
to find data showing departure and arrival points of trips by mode. Although new datasets
emerge with the development of technology such as mobile phone call data [22], access to these
data is not very easy and its reliability is questionable. One of the most common methods
for evaluation is to compare the results with other model outputs. We perform out-of-sample
evaluation by comparing results produced by SySMo with the Trafikanalys model and in-sample
evaluation by comparing with the Sampers model.

Comparison of total distance travelled (vs. Trafikanalys model)

In this part of the evaluation, we use passenger and goods transport statistics describing the
activity of the transport system (see Chapter 2 for more details). The statistics from Trafik-
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analys shows the total distances travelled annually by modes from 2000 to 2020. After 2016,
two figures are published for cars, bicycles, and walking trips since the agency adopted a new
calculation technique. Since the SySMo model is developed based on the year 2018, we use the
data corresponding to this year in the comparisons.

The SySMo model is developed to produce daily travel patterns corresponding to an average
weekday or an average weekend day. However, the statistics from Trafikanalys are in the form of
annual totals. In order to compare the outputs of the SySMo model with the data of Transport
Analysis, we calculate the annual total by weighting the SySMo model outputs on weekdays
and weekends. The Euclidean distances of the trips in SySMo are calculated by using the
starting and ending locations. We multiply the Euclidean distances by

√
2 to find the actual

road (network) distances [23]. We have applied this conversion only to Car Driver and Passenger
modes. Data from the travel survey were also used for comparison. We scale up the distance
per respondent by the weights given in the survey data and compute the total distance travelled
by mode.

Table 6.5: Annual total passenger kilometres by mode in 2018 (in billions km)
In the Trafikanalys column, the numbers calculated using the old technique are on
the left side, and on the right side are from the new technique.

Mode
SySMo weighted
by weekdays and

weekends
Trafikanalys Survey

Car Driver+Passenger 98 95 - 116 113
Public Transport 24 26 30
Bike 3 2.8 - 3.1 3.3
Walking 4 2.0 - 3.7 3.8

The comparison of annual total passenger kilometre suggests that our model results are very
close to the Survey and Trafikanalys data (Table 6.5). While the passenger kilometre of car
driver+passenger is calculated as 98 billions km in the SySMo model, it is 95 and 116 billions
km in the Trafikanalys model according to the new and old techniques, respectively. Passenger
kilometre by car driver+passenger is deduced 113 billions km from the Survey.

Comparison of daily total travel distance (vs. Sampers model)

The OD matrices from the Sampers models show the number of trips between the origins and
destinations by different purposes such as work, other, business and private. In SySMo, we
have 3 trip purposes namely work, school and other but only work trips are comparable with
Sampers as the definitions of the trip purpose are the same in the both model (See more in
Chapter 5). From Väst regional matrices, we calculate the daily total travel distance between
activity locations using corresponding zone centres. On the other hand, in SySMo we have the
exact activity locations to calculate travel distances. Since the regional models provide data
with a lower spatial resolution out of their core area, we make comparisons within the Väst
regional model’s core areas. Even though these differences in the calculation of the daily trip
distances lead to slightly different distributions, the overall patterns are captured. We use the
spherical distance to calculate travel distances between activity locations in both datasets. Since
there is no mode indicating car passenger in Sampers OD matrices, we calculate it using the
official occupancy rates obtained from Trafikverket [24]. We show the daily travel distance of
individuals between home and work trips by car, car passenger, public transport, bike, walk on
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Fig. 6.10. We also calculate the Hellinger and JS distances between distributions and show on
Table 6.6. Besides the illustrations, we report the statistical comparisons containing, median,
mean, 90th percentile, and maximum values on Table 6.7.

Table 6.6: The Hellinger and JS distances between daily total travel distance
distributions by the travel modes

Modes H dist JS dist

Car 0.046 0.117

CarP 0.070 0.171

PT 0.071 0.176

Bike 0.030 0.080

Walking 0.016 0.042

All the distributions are quite similar and the calculated distances also show the similarity. We
deduce the Hellinger distance of 0.0479 for distributions showing the daily distance travelled by
car. The car mode has the shortest Hellinger distances compared to other modes. It is followed
by public transport with a 0.0631 distance score. The shortest JS distance among distributions
corresponds to bike mode with 0.121. It is followed by the car mode with a 0.122 distance score.

Table 6.7: Comparison of daily total travel distance(km) by the travel modes

Modes
Median Mean Percentile 90 Max

SySMo Sampers SySMo Sampers SySMo Sampers SySMo Sampers

Car 7.5 6.5 12.3 9.6 29.0 22.2 393.3 360.2

CarP 7.7 6.2 14.4 9.1 32.6 20.8 344.3 354.9

PT 6.8 4.6 13.2 7.7 29.7 18.6 376.0 92.7

Bike 1.9 1.9 2.9 2.5 6.3 5.1 399.1 298.0

Walking 1.1 1.4 1.8 2.1 3.9 4.8 366.3 114.8
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(a) Car

(a) Car Passenger (b) Public Transport

(c) Bike (d) Walking

Figure 6.10: Comparison of daily travel distance of individuals between home and
work by travel modes.
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[6] “GSD Property Map by Lantmäteriet,” https://www.lantmateriet.se/sv/
Kartor-och-geografisk-information/geodataprodukter/produktlista/fastighetskartan/,
2020.

[7] Passenger and goods transport report. [Online]. Available: https://www.trafa.se/ovrig/
transportarbete/

[8] M. H. Hafezi, L. Liu, and H. Millward, “Learning daily activity sequences of population
groups using random forest theory,” Transportation research record, vol. 2672, no. 47, pp.
194–207, 2018.

[9] K. Lum, Y. Chungbaek, S. Eubank, and M. Marathe, “A two-stage, fitted values approach
to activity matching,” International Journal of Transportation, vol. 4, no. 1, pp. 41–56,
2016.
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Abstract

The Synthetic Swedish Mobility (SySMo) model is a large-scale agent-based model (ABM)
that provides a scaffold on which to build decision support tools to model and analyze fu-
ture mobility scenarios. It replicates a statistically accurate representation of the real pop-
ulation of Sweden, but is completely synthetic so that (a) it does not violate any privacy
issues; and (b) the behaviours of the agents can be modified easily to create alternative
scenarios. It is the latter feature that makes the model an ideal tool for modeling and
analyzing future scenarios in which behavioral change constitutes the largest uncertainty.
The current literature on synthetic population is limited to homogeneous activity patterns
within sub-populations, and the scope tend to be local/regional. We develop a stochas-
tic approach combined with machine learning (ML) to generate heterogeneous activity
patterns for all agents in the (SySMo) model. For evaluation, we compare our generated
activity schedules with the Swedish national travel survey. Our method offers an improved
modeling tool to asses policy options for future sustainable transportation systems. The
modeling tool can be a valuable planning and visualization tool for public and private
stakeholders in Sweden. In additional, the methodology can be broadly applied to other
regions with new data and carefully calibrated parameters.

Keywords: Activity generation; Agent-based modeling; Activity-based modeling; Ma-
chine learning; Daily activity pattern.

1. INTRODUCTION

Urbanization, increasing population, and unsustainable development of the current trans-
portation system make it necessary to transform the transport sector Shukla et al. (2022).
Autonomous cars, electric cars, shared mobility and new forms of micro-mobility such as
electric scooters, electric bikes are examples of innovations that have changed people’s
travel behaviors Fulton (2018); Matyas & Kamargianni (2019), and have the potentials
to transform the future transport systems. Activity-based modeling is a travel demand
modeling approach that has grown in popularity over the last decade (M. Hafezi et al.,
2018). The emerging big data sources and the growing computer processing power have
enabled a faster development of activity-based models that capture the dependencies be-
tween trip chains, higher temporal and spatial resolution, and behavioral realism (Rasouli
& Timmermans, 2014).
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1.1. Literature review

The most widely employed methods for activity-based models can be grouped into three
main categories: constraint-based models (Lenntorp, 1977; Jones et al., 1983; Dijst &
Vidakovic, 1997), econometric models (Bhat et al., 2004; Bowman & Ben-Akiva, 2001;
Vovsha & Chiao, 2006), and computational process models (Gärling et al., 1994; Miller
& Roorda, 2003; Pendyala et al., 1997). The constraint-based models evaluate whether
a given activity schedule is doable in a certain space-time context instead of predicting
activity-pattern Lenntorp (1977). Econometric models deduce the activity schedule that
provides the maximum utility to the individuals from their activity-travel choices based on
the theory that individuals constantly desire to maximize their utilities from their choices
Rasouli & Timmermans (2014). These approaches requires heavy mathematics and statis-
tics to create activity schedules that accurately reflect human travel behavior. Studies
using machine learning (ML) have achieved at least as good or better results than conven-
tional techniques (Koushik et al., 2020). Additionally, the adoption of machine learning
techniques simplifies the design of the models generating the activity schedules while
yielding more accurate results.

Computational process modeling—also known as rule-based models since travel behav-
iors are modeled based on heuristic rules—is the latest to emerge (Rasouli & Timmer-
mans, 2014). Some of the most prominent studies include ALBATROSS (Arentze &
Timmermans, 2000), one of the first implementations of this approach by using decision
trees. The model assumes that individuals make plans based on their activity priorities,
therefore it groups activities into fixed (e.g. work) and flexible (e.g. shopping) activities
(Ettema et al., 1993; Doherty, 2000). Allahviranloo & Recker (2013) model individu-
als’ daily activity schedules consisting of activity type and sequence using a ML method
called support vector machines (SVM). M. H. Hafezi et al. (2019) propose a new mod-
eling framework to explore and understand activity patterns. Twelve clusters of daily
activity patterns were defined using a fuzzy C-means (FCM) clustering algorithm. They
extended their work to deduce the dependencies between activity type, activity sequence,
and socio-demographic characteristics of individuals (M. Hafezi et al., 2018). AgentPo-
lis is an open-source simulation framework using neural networks, where individuals can
dynamically replan their activities at any point in time (Čertickỳ et al., 2015). Recently,
a data-driven activity scheduler (DDAS) using supervised machine learning methods was
introduced by Drchal et al. (2019). DDAS sequentially generates the activity schedule
that consists of activity type, start-end time, location, and mode choice via four separate
models.

Agent-based models of travel demand and activity-based models are often combined
(Castiglione et al., 2015). Activity-based models are used to generate travel demand for
each agent in ABMs. Characterising agents within an ABM typically comprises the fol-
lowing components: population synthesis, activity generation, and execution of activities.
The synthetic population can then be used as agents in ABMs. The activity generation
step assigns daily activity plans to the agents by using activity-based approach. Given
their relative advantages, ABMs have gained popularity in the last decade and have be-
come an important modeling tool in transport (González, Hidalgo, and Barabasi 2008;
Chee et al. 2020), disease transmission (Wesolowski et al. 2012), terrorism (Waldrop
2018), electricity models (Ringler, Keles, and Fichtner 2016), etc. The transport ABMs
have the advantage of being forward-looking (as opposed to static) and technically so-
phisticated (combing both supply – vehicle traffic and public transportation, and demand
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– location, mode and activity).

1.2. Research gaps

Previous computational process models often assign homogeneous daily activity patterns
for each sub-population or group (for instance, a particular income and age range), re-
sulting in the same activity pattern for all individuals within the subgroup ((Arentze &
Timmermans, 2000; Allahviranloo & Recker, 2013; M. Hafezi et al., 2018). While gen-
erating homogeneous activity schedules within subpopulation groups maybe a reasonable
simplification for many applications, it may not always be sufficient to estimate the im-
pacts of policy efforts that depend on, or can result in, significant behavioral changes. For
example, D. Yang et al. (2013); Hutchinson (2018) explore the activity travel behaviours
of senior people and show that heterogeneity provide better understanding of travel be-
havior. Thus, decision-makers can enact more informed policies that can increase the
accessibility of these groups.

Additionally, a complete synthetic population with the activity pattern for Sweden does
not exist. Several ABMs in Sweden simulate the future travel demand to provide inputs
for transport planning. These ABM applications in Sweden, however, are so far limited to
small regions (i.e., Stockholm (Canella et al. (2016)) or focusing on a single mode (e.g.,
electromobility for long-distance travel (Márquez-Fernández et al. (2021))).

1.3. Our contributions

We propose a novel approach to generating heterogeneous daily activity schedules (ac-
tivity type, start-end time, duration, and sequence) for a synthetic population in Sweden.
The methodology captures the heterogeneity in activity generation between individuals
and creates realistic daily plans of the individual mobility. Using ML in conjunction with
probability models, we maintain the heterogeneity by sampling from the probability dis-
tributions of the attributes such as activity types or activity duration constituting the daily
schedules. Neural networks are selected as a machine learning technique in order to pro-
duce accurate results. Gunning & Aha (2019) shows in his study that neural networks
have the high prediction ability of neural networks over the complex data set.The focus of
this paper is to apply machine learning techniques rather than comparing machine learn-
ing techniques with other statistical methods. This paper is part of a large-scale project,
called Synthetic Sweden Mobility (SySMo) Model (Tozluoğlu et al., 2022), that models
the mobility patterns of the population in Sweden. To the authors’ best knowledge there
are no other studies that have previously done this at this scale.

The paper is organized as follows: Section 2 describes the major data sources used in
the model. In Section 3 we describe the methodology of representing heterogeneous
activity generation for a synthetic population. Section 4 describes model evaluation and
assessment. In Section 5, we present the results and Section 6 discusses the limitations of
the methodology, suggestions for future work, and conclusions.

2. Data Description

Our model relies on two main sources of data: Swedish static synthetic population from
the SySMo model, and the Swedish national travel survey. We present a brief description
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of the data in the sections below. Other data are explained in the paper where suitable.

2.1. Static Swedish Population

The first module of the SySMo model synthesizes a static population of Sweden. The
population consists of over 10 million agents to statistically represent the entire Swedish
population. Each synthetic agent in the population has certain attributes related to the
agent’s personal characteristics and the household to which they belong. The attributes
consist of age, gender, civil status, residential zone, personal income, household income,
car ownership, household size, and number of children ≤ 6 years old. The attributes also
contain employment and student statuses of agents.

To create agents in the population, statistical data from Demographic Statistical Areas
(Demografiska statistikområden - DeSO) is used as input. The population is then created
by combining machine learning and IPF techniques.This ensures that the number of in-
dividuals by primary attributes such as gender or age groups in the created population in
DeSO zones is almost identical to the official statistics for 2018. DeSO zones are pub-
lished by Statistics Sweden (SCB) to provide high spatial resolution data Demographic
Statistical Areas (DeSO) (2020). There are a total of 5,984 DeSO zones, which are drawn
based on population size and governmental or physical boundaries. The zones are very
small in densely populated areas like city centers, while relatively larger in rural areas.

2.2. Swedish National Travel Survey

The Swedish national travel survey (2021) provides data about the travel behaviour of
anonymized individuals with their socio-economic and geographical characteristics. The
survey period is between 2011 and 2016, and consists of around 40000 participants aged
6-84 years. The travel survey was conducted with individuals, not households. However,
the survey respondents provide information regarding the household and number of peo-
ple in the household. In the travel survey, the activity location information of individuals
is deduced from the start and end point of travel. To use in the proposed methodology, we
classify activity types into four broad classes: home, work, school, and other.

Each participant has one weight according to their socio-demographics and another weight
based on the day the survey was conducted. These weights directly indicate the represen-
tative power of the respondent regarding socio-demographics or travel patterns (Liao et
al., 2022). The total population can be generated using these weights.

In our model, we use the travel survey to train our ML algorithms and obtain character-
istics of the synthetic population and their activities such as employment status, activity
sequence, and trip modes.

3. METHODOLOGY

In this section, we describe the methodology developed for heterogeneous activity gener-
ation for a synthetic population. The activity generation framework comprises four major
steps (Figure 1). The first main step is the assignment of activity types namely home,
work, school and other activities to the individuals. The second main step includes the
calculation of the daily total activity duration for each activity type. In the third main step,
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an activity sequence is assigned to each individual through matching with an individual
from the travel survey. The last main step calculates the duration of activity instances
in the schedules and the creation of activity schedules containing activity type, activity
sequence, and start and end times of activity instances for each individual. The proposed
method directly or indirectly ensures heterogeneity in the population using sampling tech-
niques from probability distribution, while at the same time mantaining correlations with
the different attributes. Agents with similar attributes can have different activity partic-
ipation sets, activity sequences, activity durations, and activity start-end times. Table 1
shows a summary of the variables used to explain the methodology.

Table 1: Summary of variables used in the activity generation module.

Symbol Description
H home activity
W work activity
S school activity
O other activity
tA duration of activity type A
θA willingness for activity type A
ψW employment status
ψS student status

In the proposed methodology, we model daily travel patterns corresponding to an average
weekday and an average weekend separately. The travel patterns on weekdays and week-
ends are significantly different (Rutherford et al., 1997; Quade, 2000). While people have
more commuting trips or school trips during the weekdays, more recreational trips on the
weekends. In the paper, we report results illustrating an average weekdays.

This article contains a brief summary of the methodology of the activity generation mod-
ule of SySMo model; interested readers can refer to the SySMo model documentation
(Dhamal, Tozluoğlu, et al., 2022) for more details. It can be noted that we utilize neu-
ral networks in various steps with the following hyperparameters; the stochastic gradient
descent solver, 1 hidden layer, and 100 nodes in the network.

3.1. Activity Participation

For each agent in the synthetic population, we assign a set of activity types that the agents
have the potential to be involved in. Four types of activities are considered: home (H),
work (W ), school (S), and other (O) like visiting shops, restaurants, etc. It is assumed that
each individual visits the home at least once a day and each individual is willing to join the
home activity Schläpfer et al. (2021); Barbosa et al. (2018). Therefore, our model does
not include a separate step to determine an individual’s willingness for home activity.

Let the variable capturing the daily duration of an activity type A be tA, where A ∈
{H,W,S,O}. The willingness to participate in activity type A is denoted by θA, where
A ∈ {W,S,O} since H is always = 1. We model jointly an individual’s willingness to
work (θW ), study (θS), and ‘other’ activities (θO) given its socio-economic attributes.
The considered attributes are age, gender, civil status, residential zone, personal income,
household income, car ownership, household size, and number of children ≤ 6 years old
(see more in Section 2). Modeling over joint classes preserves the correlation between
the participation of the different activity types. We develop four models depending on
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Synthetic population

1) Activity Participation

Data preparation

Assignment of 
activity types; 

work, school, and other

2) Duration and  3) Sequence of Activities

Determining broad 
classes of durations

Determining range of 
daily travel time

Determining durations of 
activity types

Assignment of 
activity sequence

4) Activity Scheduling

Initializing daily 
activity schedule at 3 AM

Setting the start and end 
time of activity instances

Activity schedules

Travel
survey

Travel
survey

Travel
survey

Figure 1: Methodology overview of the activity generation module of Synthetic Swe-
den Mobility (SySMo) model. Yellow rectangles: major steps of the activity generation;
purple rectangles: steps of the calculations; green ellipses: input data; pink rectangle:
model outputs of activity schedules for each individual.

the employment status (0/1) and student status (0/1). The status considered are: neither
employee nor student (0, 0), only employee (1, 0), only student (0, 1), and both employee
and student (1, 1). Developing four separate models ensures that non-employees do not
participate in work activities and non-students do not participate in school activities.

The Swedish national travel survey is used for training the classifier; the features consid-
ered are age, gender, civil status, coordinates of the municipality’s center, household size,
number of vehicles owned, income level, and number of children ≤ 6 years old in the
household. The model’s output Pi(θW = x,θS = y,θO = z) denotes the probability that a
synthetic agent i’s willingness to work is x, willingness to study is y, and and willingness
for ‘other’ activities is z, where x,y,z ∈ {0,1}. A class is hence assigned for every syn-
thetic agent using multinomial sampling corresponding to the deduced probabilities. The
used multinomial sampling technique allows agents to have different sets of activities,
even if they have very similar attributes. Thus, every agent is assigned its willingness to
work, school, and other activities.

6



Activity Durations

24 hours − 𝑡𝑇𝑇 ≤ 𝑡𝐻 + 𝑡𝑊 + 𝑡𝑆 + 𝑡𝑂 < 24 hours − 𝑡𝑇𝑇

Classifier 
for travel

time

3 classes 3 classes 3 classes 3 classesBroad duration 
classes

4 classes

Hourly duration 
classes 𝑡𝑇𝑇 , 𝑡𝑇𝑇

Home SchoolWork Other

Assigned
durations

Testing against 
constraints

(Low/Moderate/High) (Low/Moderate/High) (Low/Moderate/High) (Low/Moderate/High)

𝑡𝐻 𝑡W 𝑡O
Resampling

𝑡𝑆

(E.g., 12 hours) (E.g., 6 hours) (E.g., 3 hours) (E.g., 2 hours)

Figure 2: The flow chart of activity duration assignment methodology in SySMo.
Green rectangles: joint model for broad activity duration, yellow rectangles: model for
travel time, pink rectangles: model for hourly activity duration, and gray rectangles: final
activity duration satisfying the constraint.

3.2. Activity Duration

The duration of different activity types are determined using a two-step method applying
neural network classifiers and sampling techniques. Fig. 2 shows the flow chart of activity
duration assignment methodology. In the first step, we jointly deduce broad duration
classes for the different activity types; this enables us to capture the correlation between
the duration of the different activity types. Using these broad classes and attributes of
individuals, we deduce the overall travel time in a day. In the second step, using the
deduced broad classes of duration of all the activity types and the range of daily travel
time, we derive duration of all the activity types for each agent.1 The method proposed
here replicates people’s heterogeneity in the population by allowing agents with similar
attributes to have different activity duration.

Broad Activity Duration Classes

In the first step, we deduce broad duration classes by classifying an individual’s total
activity time for different activities as low, moderate or high. The definitions of low, mod-
erate, and high depend on the activity type. The broad duration classes’ boundaries are
determined by dividing the generated hourly activity duration distribution from the travel
survey into classes of approximately equal size. We consider for the different activity
types are (in hours):

• Home: (0,12], (12,18], (18,24]
• Work: (0,6], (6,10], (10,24]

1if we directly deduce hourly duration classes for the 4 different activity types instead of the two-step

method while preserving correlations, the number of potential joint classes would be
(

24
4

)
= 10,626. This

is an exceedingly high number of classes and almost impossible to model with the existing data set.
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• School: (0,6], (6,8], (8,24]
• Other: (0,2], (2,5], (5,24]

Since we have 3 broad classes for each of the 4 activity types, the total number of joint
classes is 34 = 81. Neural network classifiers are trained using the same socio-economic
attributes as in the previous step and employment/studenthood statuses to deduce joint
broad duration classes. The classifier produces the probabilities of an agent belonging to
the joint classes. We develop different classifiers for different sets of activity participa-
tion, to increase the robustness of the classifiers. Since all individuals are assumed to be
involved in home activity, there are 7 different activity participation sets in total, exclud-
ing not participating in any activity (i.e., a set of activity types is of the form {H}∪ S,
where S ∈ 2{W,S,O} \{}). After assigning the joint classes’ possibilities to all agents using
the classifiers, the broad classes of duration of activity types are hence assigned using
multinomial sampling.

Daily Travel Time Range

To deduce more specific durations of the different activity types , we estimate the total
daily travel time for each agent. The sum of the duration of the activities is then set equal
to 24 hours minus the total travel time. We consider 4 classes for estimating daily travel
times, namely (the numbers are hours): (0,0.5], (0.5,1], (1,2], (2, 6]. These classes are
approximately based on the four quartiles for daily travel time in the travel survey. The
class assigned to an agent is

(
tT T , tT T

]
, the lower limit of the range of its daily travel time

is tT T and the upper limit is tT T .

For all agents, a neural network classifier is trained using the travel survey, the features
being the socio-economic attributes, the employment and studenthood statuses, the set of
activity types, and the broad classes of duration deduced above. The classifier outputs
the probability distribution over the 4 classes of total daily travel time for each agent.
From the probability distribution, each agent is assigned total travel time class through
multinomial sampling.

Duration of Activity Types

After the broad classes of activity duration and the range of daily travel time are calcu-
lated, an hourly duration for each activity type is assigned. First, we deduce the prob-
ability distribution over hourly duration of each activity type, by considering 24 hourly
classes per activity type. Then, we sample the duration of all types of activities such that
they collectively satisfy Constraint (1). This constrain implies that, the sum of the du-
ration of the activity types should be within 24 hours minus the range of the day’s total
travel time.

24 hours− tT T ≤ tH + tW + tS + tO < 24 hours− tT T (1)

To calculate the probability distributions over the 24 hourly duration classes, we use neu-
ral network classifiers. An hourly duration class is of the form [T,T + 1) hours, where
T ∈ {0,1, . . . ,23}. The features considered are socio-economic attributes, employment
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and studenthood statuses, willingness for the activity types, broad classes of duration of
the activity type, and the class corresponding to daily travel time. We develop a classifier
for each of the 3 broad duration classes of each activity type, thus, 12 classifiers in total.

We now deduce the duration of all activity types such that their sum satisfies Constraint (1).
There are fundamentally two ways to achieve this, namely, mathematically 2 and simulation-
based. In our model, we employ a simulation-based approach since the implementation
of the method is easier and can be implemented in one step without having to first create
a truncated joint distribution. For an agent, we first sample the hourly duration of the four
activity types from the aforementioned probability distributions. Then, numbers sampled
uniformly at random in [0,1) are added to each of the sampled hourly activity duration
to introduce idiosyncratic variances and generate the final duration even in minutes. If
Constraint (1) is satisfied for an agent, the four activity types are assigned the sampled
duration. On the other hand, if the constraint is not satisfied, we repeat the sampling for
the hourly duration and the idiosyncratic variances procedure. After 30 iterations, about
99% of the agents are assigned duration while satisfying Constraint (1). In order to ensure
that all agents satisfy the constraint, we employ a simple heuristic procedure that trims or
adds sampled times.

3.3. Activity Sequencing

For each agent in the synthetic population, we assign an activity sequence providing in-
formation about the frequency, order and type of activities participated in a day. We as-
sume that individuals with similar socio-economic attributes and activity durations, would
have similar activity sequences. While similarity between two sets of activity duration
(tH , tW , tS, tO) could be quantified since they have the same unit (i.e. time), it is not clear
how similarity between two sets of socio-economic attributes (e.g., age, gender, etc.) can
be quantified, since they do not have the same unit and are not directly comparable. To
utilize both socio-economic attributes and activity durations in similarity measurements,
we employed a two-step method to assign the daily activity patterns to the agents in the
synthetic population.

For each agent, we first choose a set of candidate individuals sharing similar socio-
economic attributes from the travel survey. We consider only individuals having the same
set of willingness for the activity types. To have as many similar socio-economic attributes
as possible between synthetic and survey populations, we gradually filter candidate indi-
viduals based on their attributes. The gradual process ensures that a certain number of
candidates remain in the set after each filtering.

We use daily activity durations as proxy parameters to determine the most similar in-
dividual (we use a method similar to Lum et al. (2016)). The similarity is measured
using the Euclidean distance in the 4-dimensional space, between activity duration’ tu-
ples (tH , tW , tS, tO). For a synthetic agent, we choose the individual from the previously
identified candidates using the Euclidean distance. Then, the sequence is directly copied
from the individual chosen to the agent.

2In the mathematical approach, one would need to create a truncated joint distribution of the hourly
duration of the four activity types, which can be obtained by combining the distributions of the activity
types’ duration and truncating to satisfy Constraint (1). The hourly duration can then be sampled from this
truncated joint distribution, followed by adding a few minutes to the hourly duration so as to introduce a
natural idiosyncratic variance, while ensuring that Constraint (1) is not violated.
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3.4. Activity Scheduling

With the duration of the different activity types and the activity sequence ready, we gener-
ate the activity schedule for each agent in the synthetic population. We begin by assuming
that the day starts and ends at 3 AM, since this is the time of day with the least number
of individuals travelling according to the travel survey. We then deduce the start and end
times of the activity that takes place at 3 AM. Modeling the start and end times of the
3 AM activity will help arrange the remaining activities during a day using the activity
sequence and duration, since the head and tail of the sequence is defined. Thereafter,
we distribute the total duration of an activity type among its individual instances in the
activity sequence, and hence generate an activity schedule.

The start and end times of the 3 AM activity

The 3 AM activity type is directly obtainable from the first/last activity type in the deduced
activity sequence. We thus start by determining its start and end time. Let a3AM denote
the 3 AM activity instance and ta3AM be its duration. Let T s

a3AM
and T e

a3AM
denote the start

and end times of the 3 AM activity. In order to deduce T s
a3AM

and T e
a3AM

, we first deduce the
hourly distributions, using neural network classifiers (with 24 classes each) trained using
the travel survey. As we did when determining activity duration, we develop different
classifiers for each activity type.

For the sampling process, we impose a certain constraint with regard to the amount of
time spent for the 3 AM activity: it should not exceed the total duration of the activity
type corresponding to the 3 AM activity. We impose a lower bound such that the mean of
the upper and lower bounds equals the deduced time of the 3 AM activity instance. Let
D(T s

a3AM
,T e

a3AM
) denote the deduced amount of time spent for the 3 AM activity instance.

Since we have already calculated the total duration of the activity type A3AM, the fraction
of the total this total time that is allotted to the 3 AM activity instance can be denoted
f3AM =

ta3AM
tA3AM

. We deduce f3AM by way of regression using neural network trained using
the travel survey. To have a lower bound such that the mean of the upper and lower
bounds equals the deduced spent time for the 3 AM activity instance, we formulate the
lower bound as

(
1−2(1− f̂3AM)

)
. We hence obtain the following constraint:

(
1−2(1− f̂3AM)

)
tA3AM < D(T s

a3AM
,T e

a3AM
) < tA3AM (2)

We sample the start and end times of the 3 AM activity instance from their corresponding
hourly distributions deduced earlier, and add idiosyncratic variances to them to obtain
times that satisfy Constraint (2). We employ a similar simulation based approach as the
one used for sampling activity duration. While the sampled start and end times of the
3 AM activity instance satisfying the constraint are assigned to agents, the start and end
times that do not satisfy are iteratively re-sampled. For the small fraction of agents whose
start and end times of the 3 AM activity instance do not satisfy Constraint (2), we employ
a simple heuristic procedure to ensure that they do.
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Start and end times of activity instances

To find the start and end times of remaining activity instances in the sequence, we dis-
tribute the activities total duration equally among those of the same type in the sequence,
i.e. if an individual goes to work, than other activity, and then back to work, the two work
duration will be of equal length. After computing duration of all activity instances in the
daily activity schedules of all the agent, we assign the travel times between adjacent activ-
ity instances. To calculate the total travel time for the day, the sum of the duration of the
different activity types is subtracted from 24 hours (i.e., tT T = 24− (tH + tW + tS + tO)).
We then distribute the total daily travel time equally across the different trips between the
activities in the sequence. Note that in this trip we deduce a total daily travel time, while
earlier (see section x), we had only deduced a range.

Now that we have a temporal arrangement of all activity instances within a day for every
agent (that is, the activity sequence along with the start and end times of each activity
instance), the daily activity schedules of all the agents in the synthetic population are
ready.

4. Model Evaluation and Assessment

In this section we present the evaluations of the methodology using the Swedish national
travel survey. We first evaluate the performance of the neural networks used in several
steps in the methodology. Then, we perform in-sample evaluations showing the similarity
of the model results with the input data used to construct the model.

4.1. ML models evaluation

We evaluate the probabilistic NNCs using the travel survey as ground truth data. Brier
Score (BS) is one of the metrics frequently used to measure the accuracy of probabilistic
predictions (Brier et al., 1950). However, the results produced by the Brier Score can be
very difficult to interpret when the classes are imbalanced. We thus use the k-fold cross-
validation method with the Brier skill score (BSS). To have a similar label distribution to
the data in each fold, we run stratified cross-validation (For an in-depth explanation, see
(Dhamal, Tozluoğlu, et al., 2022)). BSS gives a score by comparing the BS of the model
with BS of a reference measure. The most common formulation of BSS is

BSS = 1− BS
BSre f

(3)

BSS gives a value between −∞ and 1 by comparing the Brier score with a reference
measure. A naive model having a constant probability distribution that shows densities
of classes in the data set for each sample can be used as a reference measure. A score of
0 means the model results are identical to a naive model, whereas 1 is the best possible
score meaning that predictions are identical to the data compared. A score below 0 means
the results are worse than those from the naive model. We perform the calculation for all
ML models used to generate the activity schedules.
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The models of participating in activities, and the models of broad activity duration are
reported here (Table 2). Four ML models are created by status (employment = 0/1 and
student = 0/1). For each model, BSS scores are calculated for participating in work (W),
School (S), and other (O)) activities between the validation data and the prediction data
sets. Table 2 presents BSS scores. All BSS scores are above 0 except the model including
only studenthood status as positive (E = 0, S = 1) which has slightly lower accuracy than
the naive model. This may be due to the definition of students being very broad and that
these people could have very flexible schedules that are more difficult to model. The
average BSS = 0.3067, and the weighted average BSS by people in each group = 0.1320.

Table 2: Brier skill scores for probability of participating in work, school, and other
activities by employment (E) and student (S) status. A scores 0 means being identical
to the naive model, whereas 1 is the best possible score. A score below 0 means worse
scores than the scores calculated from the naive model.

Status Percentage of pop. (%) BSS Standard dev.
E = 0, S = 0 21 0.2770 0.0307
E = 0, S = 1 21 -0.0516 0.1764
E = 1, S = 0 55 0.1020 0.0138
E = 1, S = 1 3 0.8995 0.0041

ML models are employed to predict the duration of home (H), work (W), school (S),
and other (O) activities. For the broad duration classes, we developed seven separate
ML models by W, S, and O activity participation sets (See more in Section 3.2). A set
of activity participation is denoted S, where W,S,O ∈ {0,1} and S \ {0,0,0}. For each
model, BSS calculates the match of the predicted duration (in broad categories, see below)
for W, S, and O between the validation data and the prediction. The scores are reported
in Table 2. All BSS scores are above 0, and some models scores such as (W = 0, S = 1,
O = 1) is close to 1, the best possible score. We found the average BSS = 0.5528, and the
weighted average BSS by people in each group BSS = 0.2682.

Table 3: Brier skill scores for matching the broad duration classes in work (W),
school (S) and other (O) activity

Activity participation Percentage of pop. (%) BSS Standard dev.
W = 1, S = 0, O = 0 38.1 0.1848 0.0156
W = 0, S = 1, O = 0 10.7 0.5585 0.0234
W = 1, S = 1, O = 0 7.2 0.6645 0.0219
W = 0, S = 0, O = 1 22.7 0.3933 0.0515
W = 1, S = 0, O = 1 21.0 0.0899 0.3003
W = 0, S = 1, O = 1 0.2 0.9953 0.0015
W = 1, S = 1, O = 1 0.1 0.9831 0.0031

4.2. Activity duration and start-end time distributions

We also compare our results regarding the activity duration and the start-end time distri-
butions with the travel survey. The comparisons are performed for different subgroups of
the population based on agent attributes and activity features. Below we plot the density
histograms of activity durations, both from our model and the travel survey (Figure 3) by
joint classes (i.e. by activity type and agent attribute ), and start-end time for a selected
activity (Figure 5) by a single class (e.g. activity type). For each plot, we calculate the
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Hellinger distance and Jensen–Shannon (JS) distances to quantify how similar the distri-
butions are (see Tozluoğlu et al. (2022) for more details). These distances have values in
the range [0,1], where 1 denotes the maximum distance between the distributions. If each
class with a value of 0 in one distribution gets a positive value in the other distribution or
each class with a positive value in one distribution gets a value of 0 in the other distribu-
tion, the distance between these two distributions will be the maximum distance, 1. E.g.,
Pi(θ1 = x,θ2 = y,θ3 = z) denotes the probability that an instance i being θ1 is x, being θ2
is y, and being θ3 is z, where x,y,z ∈ {0,1}. If P j = (1,0,0) and Pk = (0,0.6,0.4), the
distance between j and k instances will be 1, which indicates that the distributions are far
from each other.

Figure 3: Comparison of work activity duration by gender. The left panel shows hours
spent at work activity for males and the right panel shows hours spent at work activity for
females.

Figure 3 shows that the Hellinger distance for distribution of work activity duration of
males is 0.11, and the JS distance is 0.13. The mean duration of work activity in the sur-
vey and synthetic populations are 8.3 and 8.5 hours, respectively. We found the Hellinger
distance for the distribution of work activity duration of females is 0.1245, and the JS
distance is 0.149. The mean duration of work activity in the survey and synthetic pop-
ulations are 8 and 7.8 hours, respectively. The work activity duration distributions by
gender obtained from the model show similar work activity duration distributions as the
survey data. For the school, home, and other activity duration distributions by gender, we
calculate the Hellinger distance in the range of [0.1071, 0.2113], and the JS distance in
the range of [0.1282, 0.2518]. The largest distance is obtained in the comparison of hours
spent at other activity for females. Apart from this, the distances are less than 0.18 in all
other comparisons.

Figure 4: Comparison of home activity duration by income group. The left panel
shows hours spent at home activity for individuals in low income group and the right
panel shows hours spent at home activity for individuals in upper-middle income group.

We also compare the distributions for the five different income classed in out model:
no income, low, lower middle, upper middle and high. For illustration, we report the
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distribution of hours spent for home activity for individuals in low income and upper-
middle income group in Figure 4. The Hellinger distance for the distribution of home
activity duration for individuals in the low income group is 0.14, and the JS distance is
0.17. While the mean value is calculated as 18.8 hours in the survey, it is calculated as 19.6
hours in our model. We find the Hellinger distance for the distribution of home activity
duration for individuals in upper-middle income group to be 0.11, and the JS distance to
be 0.14. The mean value calculated from the survey is 15.6 hours, in our model it is 16.0
hours. These results indicate that the distributions of home activity duration by income
groups in the survey and our model have show similar patterns.

Since our output has a much larger sample size than the travel survey, we use densities
on the y-axis to make the histograms comparable. Another difference is that the survey
population contains mostly individuals having some activities during a day and fewer
people with no activity staying home all day. In contrast, our model includes this group as
well to cover the entire population. The implication of this is that the bin corresponding to
the population who spends 24 hours at home in the synthetic population is much larger and
this big bin leads to all other bins having lower densities. This is part of the explanation
for the difference in density values for all other bins.

Figure 5: Comparison of 3 AM activity end-time distribution only for those with
home activity type.

The distribution of the end time of the 3 AM activity is important since it will help to
capture the morning peak in the average weekday travel pattern. The vast majority of
the population (about 99 percent) is at home at this time and very few agents attend an
out-of-home activity such as work activity. Figure 5 shows the end time distribution of
the home activity instances, which take place at 3 AM. The Hellinger distance is 0.07,
and the JS distance is 0.09 for these distributions.

These distance values show that the model generates distributions of both activity duration
and activity start-end time similar to the distributions from the travel survey data. Even
in subgroups by agent attributes or activity features, the distributions show similar char-
acteristics to distributions derived from the surveyed population. The comparisons based
on subgroups shows that the correlation between the attributes and activity schedules of
individuals is maintained.

5. Results and discussion

The simulated temporal activity pattern for each agent is one of the main outcomes of the
proposed methodology. Figure 6 shows the aggregated activity schedules of agents by
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type of activity and age group over 24 hours from 00:00 (midnight). The y-axis shows the
share of individuals participation in each activity type. Most people are home from 12 AM
(00:00) to 6 AM in all income groups. A significant proportion of the population engages
in out-of-home activities after 6 AM and we can assume that travel demand increases
because of this.

(a) (b)

(c) (d)

(e)

Figure 6: Aggregated activity pattern of the synthetic agents by activity type and in-
come group. (a): no income group (23 percent of the population), (b) low income group
(19 percent of the population), (c) lower-middle income group (20 percent of the popu-
lation), (d) upper-middle income group (19 percent of the population), (e) high income
group (19 percent of the population).

Individuals with no-income mostly engage in other and school activities during the day.
The largest participation in school activities is observed in this group. Individuals in the
low-income group mostly participate in other activities, participation in school or work
activities are low. The share of agents participating in the work activity increase with
income level and the highest participation is seen in the upper-middle and high-income
groups. Since it is possible to participate in more than one activity during an hour, the
total number of people engaged in activities may be more than the entire population. In all
income groups except no income, the proportion of people participating in the work and
other activity types increases at around 6 in the morning, and a peak is generally observed
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around noon.

The activity schedule of an agents will depend on its socio-economic characteristics how-
ever, due to the heterogeineity introduces in our methodology two agents with the same set
of characteristics will not have identical activity schedules. Figure 7 depicts this hetero-
geneous activity pattern by plotting the activities of a specific set of the population. The
set considered contains individuals with an age range of 40-45, male, married, employed,
in high-income class, with no children ≤ 6 years old in household, no car in household,
and residing in Stockholm. Panel a in the figure shows aggregated activity pattern of the
population set with the share of participation in different activity types, showing that at
a given hour different activity types are present. Panel b depicts the frequency of the 10
most frequent daily activity sequences in the population. While there is a dominant activ-
ity pattern (H-W-H),this is still below half of the agents and other activity sequences are
present within the group.

(a) (b)

Figure 7: Activity pattern of the synthetic agents; aged 40-45, male, married, em-
ployee, in high-income class, no children ≤ 6 years old in household, and no car
in household, residing in Stockholm. (a): Aggregated activity pattern of the sub-
population by activity type, (b): Percentage of 10 most frequent daily activity sequences
in the the sub-population (26 thousand agents in total).

6. DISCUSSION

The daily activity generation module plays a crucial role toward creating a realistic mobil-
ity pattern. Most previous studies have created homogeneous activity patterns within sub-
populations Arentze & Timmermans (2000); Allahviranloo & Recker (2013); M. Hafezi
et al. (2018), meaning that individuals belonging to the same group (i.e., a particular
income and age range) have the same activity pattern which is not a very realistic as-
sumption. The models generating homogeneous activity patterns within the population
groups fail to capture the behavioral differences that occur within the group, even though
these accurately capture many indicators of travel behavior at an aggregated level, such
as total distance traveled in the population.

Here we propose a model generating population with a heterogeneous activity pattern.
The developed model also maintains the correlation between attributes (e.g. gender, and
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income group) and activity schedules of individuals. We think that these contributions
to the literature will facilitate more sensitive analysis, and more targeted policy inter-
ventions. For instance, if the socio-economic characteristics of population groups with a
certain travel pattern are predicted such as groups performing long commuting trips by
private car, the effectiveness of policies designed to increase adaptation to new technolo-
gies on these groups can be more accurately measured.

We assess the performance and validity of the proposed methodology by performing in-
sample evaluations against the travel survey. The results of the comparisons show that the
activity schedules generated from the model simulate those of the travel survey reason-
ably well. In order to see how well the heterogeneity is captured in the proposed model,
comparisons are also made in specific sets of the population by joint classes (e.g. by
agent attributes like age and gender). We also evaluate the ML techniques used to gen-
erate activity schedules in SySMo. The result also shows that ML is an useful tool to
predict features regarding the activity schedules of individuals. Ideally one would want to
validate the activity schedules at a micro-level with data not used to develop the model,
however there is a lack of such data and at this stage we rely only on a comparison with the
travel survey. Future work could include comparing with emerging data sources, however
even these have their challenges when it comes to validity and representativeness Yuan et
al. (2018, 2020).

In the field of transportation modeling, machine learning techniques are increasingly ap-
plied and substitute conventional techniques. For example, these are some of the examples
of using machine learning to model mode choice (Zhang & Xie (2008); Zhu et al. (2018);
Moons et al. (2007)), activity pattern predicting (M. Yang et al. (2014); M. H. Hafezi
et al. (2019)), and route choice (Sun & Park (2017)). We employ artificial neural net-
work approach in ML to model the complexity of the activity patterns within a synthetic
population since the approach has high predictive capabilities. However, we haven’t ex-
amined other ML approaches in this research. Convolutional neural networks (CNN)
have shown high performance to forecast human travel behavior (Liang & Wang, 2017;
Liu et al., 2017) as well as other fields such as image classification or object detection
tasks (Ciregan et al., 2012; Erhan et al., 2014). Using more advanced ML methods such
as convolutional neural networks to the current methodology could be a future research
topic to further improve the result with different approaches.
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