205 research outputs found

    Mekanisme Reaksi Asam Borat Dengan Produk Radiolisis Akibat Radiasi Sinar- Pada Temperatur 25oc

    Full text link
    MEKANISME REAKSI ASAM BORAT DENGAN PRODUK RADIOLISIS AKIBAT RADIASI SINAR- PADA TEMPERATUR 25OC. Telah dilakukan simulasi yang bertujuan untuk memahami mekanisme reaksi antara asam borat (H3BO3) yang ditambahkan kedalam air pendingin primer PWR dengan produk radiolisis akibat radiasi dengan sinar- pada temperatur 25oC. Simulasi dilakukan dengan menggunakan perangkat lunak ‘Facsimile\u27 yang berbasis kinetika reaksi yang berkelanjutan. Sebagai masukan adalah set reaksi kimia yang terdiri dari 61 jenis reaksi dengan konstanta kecepatan reaksinya, nilai-G spesi radiolisis akibat radiasi sinar-, laju dosis 10 dan 104 Gy/s, konsentrasi awal oksigen yang berhubungan dengan sistem aerasi (0,25M), deaerasi dan konsentrasi asam borat hingga konsentrasi 1M. Luaran di program berupa seri Perubahan konsentrasi vs waktu iradiasi. Data luaran kemudian diolah menggunakan perangkat pembuat grafik ‘Origin\u27. Validasi dilakukan dengan membandingkannya dengan hasil simulasi sebelumnya. Hasil validasi menunjukkan perbedaan yang tidak signifikan, sehingga diputuskan bahwa set reaksi sekarang adalah valid. Penambahan asam borat menekan konsentrasi oksigen secara signifikan. Hubungan kenaikan logaritmik penambahan konsentrasi H3BO3 vs produk oksigen menunjukkan hubungan linear yang menurun. Dari hasil simulasi dapat dipahami bahwa penambahan H3BO3 tidak hanya mengatur reaktivitas neutron pada temperatur 25oC tetapi juga memberikan imbas positif didalam menekan konsentrasi produk oksigen yang memegang peran penting di dalam proses korosi

    Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function

    Get PDF
    Purpose P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects. Methods: Three non-human primates underwent 4 PET scans: 2 with (R)[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed. Results At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers. Conclusion [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-humanprimates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT

    Pharmacokinetic Modeling of (R)-[11C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates

    Get PDF
    (R)-[(11)C]verapamil is a radiotracer widely used for the evaluation of the P-glycoprotein (P-gp) function at the blood-brain barrier (BBB). Several studies have evaluated the pharmacokinetics of (R)-[(11)C]verapamil in rats and humans under different conditions. However, to the best of our knowledge, the pharmacokinetics of (R)-[(11)C]verapamil have not yet been evaluated in nonhuman primates. Our study aims to establish (R)-[(11)C]verapamil as a reference P-gp tracer for comparison of a newly developed P-gp positron emission tomography (PET) tracer in a species close to humans. Therefore, the study assesses the kinetics of (R)-[(11)C]verapamil and evaluates the effect of scan duration and P-gp inhibition on estimated pharmacokinetic parameters. Three nonhuman primates underwent two dynamic 91 min PET scans with arterial blood sampling, one at baseline and another after inhibition of the P-gp function. The (R)-[(11)C]verapamil data were analyzed using 1-tissue compartment model (1-TCM) and 2-tissue compartment model fits using plasma-corrected for polar radio-metabolites or non-corrected for radio-metabolites as an input function and with various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (SE %) of the estimated parameters. 1-TCM was selected as the model of choice to analyze the (R)-[(11)C]verapamil data at baseline and after inhibition and for all scan durations tested. The volume of distribution (V(T)) and the efflux constant k(2) estimations were affected by the evaluated scan durations, whereas the influx constant K(1) estimations remained relatively constant. After P-gp inhibition (tariquidar, 8 mg/kg), in a 91 min scan duration, the whole-brain V(T) increased significantly up to 208% (p < 0.001) and K(1) up to 159% (p < 0.001) compared with baseline scans. The k(2) values decreased significantly after P-gp inhibition in all the scan durations except for the 91 min scans. This study suggests the use of K(1), calculated with 1-TCM and using short PET scans (10 to 30 min), as a suitable parameter to measure the P-gp function at the BBB of nonhuman primate

    Highlight selection of radiochemistry and radiopharmacy developments by editorial board (January-June 2020)

    Get PDF
    BackgroundThe Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to describe trends in the field.ResultsThis commentary of highlights has resulted in 19 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals.ConclusionTrends in radiochemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry

    Pharmacokinetic Modeling of [ 18 F]MC225 for Quantification of the P-Glycoprotein Function at the Blood-Brain Barrier in Non-Human Primates with PET

    Get PDF
    [18F]MC225 has been developed as a weak substrate of P-glycoprotein (P-gp) aimed to measure changes in the P-gp function at the blood–brain barrier with positron emission tomography. This study evaluates [18F]MC225 kinetics in non-human primates and investigates the effect of both scan duration and P-gp inhibition. Three rhesus monkeys underwent two 91-min dynamic scans with blood sampling at baseline and after P-gp inhibition (8 mg/kg tariquidar). Data were analyzed using the 1-tissue compartment model (1-TCM) and 2-tissue compartment model (2-TCM) fits using metabolite-corrected plasma as the input function and for various scan durations (10, 20, 30, 60, and 91 min). The preferred model was chosen according to the Akaike information criterion and the standard errors (%) of the estimated parameters. For the 91-min scan duration, the influx constant K1 increased by 40.7% and the volume of distribution (VT) by 30.4% after P-gp inhibition, while the efflux constant k2 did not change significantly. Similar changes were found for all evaluated scan durations. K1 did not depend on scan duration (10 min—K1 = 0.2191 vs 91 min—K1 = 0.2258), while VT and k2 did. A scan duration of 10 min seems sufficient to properly evaluate the P-gp function using K1 obtained with 1-TCM. For the 91-min scan, VT and K1 can be estimated with a 2-TCM, and both parameters can be used to assess P-gp function

    Highlight selection of radiochemistry and radiopharmacy developments by editorial board

    Get PDF
    BackgroundThe Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development.ResultsThis commentary of highlights has resulted in 23 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals.ConclusionTrends in radiochemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry

    Evaluation of P-glycoprotein function at the blood-brain barrier using [F-18]MC225-PET

    Get PDF
    P-glycoprotein (P-gp) is an ATP-dependent efflux transporter located at the blood–brain barrier (BBB), involved in the transport of a variety of neurotoxic substances out of the brain. Alterations in P-gp function play an essential role in the pathophysiological mechanisms underlying neurodegenerative disorders

    Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: Laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses

    Get PDF
    Background: 18F-FLT is a novel PET radiotracer which has demonstrated a strong potential utility for imaging cellular proliferation in human tumors in vivo. To facilitate future regulatory approval of 18F-FLT for clinical use, we wished to demonstrate the safety of radiotracer doses of 18F-FLT administered to human subjects, by: 1) performing an evaluation of the toxicity of 18F-FLT administered in radiotracer amounts for PET imaging, 2) comparing a radiotracer dose of FLT to clinical trial doses of FLT. Methods: Twenty patients gave consent to a 18F-FLT injection, subsequent PET imaging, and blood draws. For each patient, blood samples were collected at multiple times before and after 18F-FLT PET. These samples were assayed for a comprehensive metabolic panel, total bilirubin, complete blood and platelet counts. 18F-FLT doses of 2.59 MBq/Kg with a maximal dose of 185 MBq (5 mCi) were used. Blood time-activity curves were generated for each patient from dynamic PET data, providing a measure of the area under the FLT concentration curve for 12 hours (AUC12). Results: No side effects were reported. Only albumin, red blood cell count, hematocrit and hemoglobin showed a statistically significant decrease over time. These changes are attributed to IV hydration during PET imaging and to subsequent blood loss at surgery. The AUC12 values estimated from imaging data are not significantly different from those found from serial measures of FLT blood concentrations (p = 0.66). The blood samples-derived AUC12 values range from 0.232 ng*h/mL to 1.339 ng*h/mL with a mean of 0.802 � 0.303 ng*h/mL. This corresponds to 0.46% to 2.68% of the lowest and least toxic clinical trial AUC12 of 50 ng*h/mL reported by Flexner et al (1994). This single injection also corresponds to a nearly 3,000-fold lower cumulative dose than in Flexner's twice daily trial. Conclusion: This study shows no evidence of toxicity or complications attributable to 18F-FLT injected intravenously.This study was supported by NIH grant R01 CA115559, 1R01 CA107264, and 1R01 CA80907

    Head-to-head comparison of (R)-[C-11]verapamil and [F-18]MC225 in non-human primates, tracers for measuring P-glycoprotein function

    Get PDF
    PURPOSE: P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects.METHODS: Three non-human primates underwent 4 PET scans: 2 with (R)-[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite-corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed.RESULTS: At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers.CONCLUSION: [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-human primates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT.</p
    corecore