66 research outputs found

    One-dimensional Dirac oscillator in a thermal bath

    Full text link
    We analyze the one-dimensional Dirac oscillator in a thermal bath. We found that the heat capacity is two times greater than the heat capacity of the one-dimensional harmonic oscillator for higher temperatures.Comment: 4 pages, 3 figures, to appear in Physics Letters

    The Structure Of The D49 Phospholipase A2 Piratoxin Iii From Bothrops Pirajai Reveals Unprecedented Structural Displacement Of The Calcium-binding Loop: Possible Relationship To Cooperative Substrate Binding

    Get PDF
    Snake venoms are rich sources of phospholipase A2 homologues, both active calcium-binding Asp49 enzymes and essentially inactive Lys49 proteins. They are responsible for multiple pharmacological effects, some of which are dependent on catalytic activity and others of which are not. Here, the 2.4 Å X-ray crystal structure of an active Asp49 phospholipase A2 from the venom of the snake Bothrops pirajai, refined to conventional and free R values of 20.1 and 25.5%, respectively, is reported. Unusually for phospholipases A2, the dependence of the enzyme rate on the substrate concentration is sigmoidal, implying cooperativity of substrate binding. The unprecedented structural distortion seen for the calcium-binding loop in the present structure may therefore be indicative of a T-state enzyme. An explanation of the interaction between the substrate-binding sites based on the canonical phospholipase A2 dimer is difficult. However, an alternative putative dimer interface identified in the crystal lattice brings together the calcium-binding loops of neighbouring molecules, along with the C-terminal regions which are disulfide bonded to those loops, thereby offering a possible route of communication between active sies.592255262Adams, P.D., Pannu, N.S., Read, R.J., Brünger, A.T., (1997) Proc. Natl Acad. Sci. USA, 94, pp. 5018-5023Arni, R.K., Fontes, M.R., Barberato, C., Gutierrez, J.M., Diaz, C., Ward, R.J., (1999) Arch. Biochem. Biophys., 366, pp. 177-182Barton, G.J., (1993) Protein Eng., 6, pp. 37-40Beghini, D.G., Toyama, M.H., Hyslop, S., Sodek, L.C., Novello, J.C., Marangoni, S., (2000) J. Protein Chem., 19, pp. 679-684Brünger, A.T., (1992) Nature (London), 355, pp. 472-474Brünger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Warren, G.L., (1998) Acta Cryst., D54, pp. 905-921Burke, J.R., Witmer, M.R., Tredup, J., Micanovic, R., Gregor, K.R., Lahiri, J., Tramposch, K.M., Villafranca, J.J., (1995) Biochemistry, 34, pp. 15165-15174Carredano, E., Westerlund, B., Persson, B., Saarinen, M., Ramaswamy, S., Eaker, D., Eklund, H., (1998) Toxicon, 36, pp. 75-92Cha, S.S., Lee, D., Adams, J., Kurdyla, J.T., Jones, C.S., Marshall, L.A., Bolognese, B., Oh, B.H., (1996) J. Med. Chem., 39, pp. 3878-3881Cho, W., Kézdy, F.J., (1991) Methods Enzymol., 197, pp. 75-79(1994) Acta Cryst., D50, pp. 760-763Cowtan, K.D., Zhang, K.Y., (1999) Prog. Biophys. Mol. Biol., 72, pp. 245-270Dessen, A., Tang, J., Schmidt, H., Stahl, M., Clark, J.D., Seehra, J., Somers, W.S., (1999) Cell, 97, pp. 349-360Devedjiev, Y., Popov, A., Atanasov, B., Bartunik, H.D., (1997) J. Mol. Biol., 266, pp. 160-172Dijkstra, B.W., Drenth, J., Kalk, K., Vandermaalen, P.J., (1978) J. Mol. Biol., 124, pp. 53-60Esnouf, R.M., (1997) J. Mol. Graph., 15, pp. 132-134Felsenstein, J., (1989) Cladistics, 5, pp. 164-166Fremont, D.H., Anderson, D.H., Wilson, I.A., Dennis, E.A., Xuong, N.H., (1993) Proc. Natl Acad. Sci. USA, 90, pp. 342-346Frishman, D., Argos, P., (1995) Proteins, 23, pp. 566-579Gerrard, J.M., Robinson, P., Narvey, M., McNicol, A., (1993) Biochem. Cell Biol., 71, pp. 432-439Gutierrez, J.M., Lomonte, B., (1995) Toxicon, 33, pp. 1405-1424Holland, D.R., Clancy, L.L., Muchmore, S.W., Ryde, T.J., Einspahr, H.M., Finzel, B.C., Heinrikson, R.L., Watenpaugh, K.D., (1990) J. Biol. Chem., 265, pp. 17649-17656Holm, L., Sander, C., (1998) Nucleic Acids Res., 26, pp. 316-319Holzer, M., Mackessy, S.P., (1996) Toxicon, 34, pp. 1149-1155Jones, T.A., Zou, J.Y., Cowan, S.W., Kjeldgaard, M., (1991) Acta Cryst., A47, pp. 110-119Keith, C., Feldman, D.S., Deganello, S., Glick, J., Ward, K.B., Jones, E.O., Sigler, P.B., (1981) J. Biol. Chem., 256, pp. 8602-8607Kleywegt, G.J., (1999) Acta Cryst., D55, pp. 1878-1884Kleywegt, G.J., Brünger, A.T., (1996) Structure, 4, pp. 897-904Kleywegt, G.J., Jones, T.A., (1996) Acta Cryst., D52, pp. 829-832Kleywegt, G.J., Jones, T.A., (1998) Acta Cryst., D54, pp. 1119-1131Kraulis, P.J., (1991) J. Appl. Cryst., 24, pp. 946-950Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., (1993) J. Appl. Cryst., 26, pp. 283-291Lawrence, M.C., Colman, P.M., (1993) J. Mol. Biol., 234, pp. 946-950Leahy, D.J., Axel, R., Hendrickson, W.A., (1992) Cell, 68, pp. 1145-1162Lee, W.H., Da Silva Giotto, M.T., Marangoni, S., Toyama, M.H., Polikarpov, I., Garratt, R.C., (2001) Biochemistry, 40, pp. 28-36Lloret, S., Moreno, J.J., (1993) Toxicon, 31, pp. 949-956Lu, G., (2000) J. Appl. Cryst., 33, pp. 176-183Mancuso, L.C., Correa, M.M., Vieira, C.A., Cunha, O.A., Lachat, J.J., De Araújo, H.S., Ownby, C.L., Giglio, J.R., (1995) Toxicon, 33, pp. 615-626Maraganore, J.M., Merutka, G., Cho, W., Welches, W., Kezdy, F.J., Heinrikson, R.L., (1984) J. Biol. Chem., 259, pp. 13839-13843Matthews, B.W., (1968) J. Mol. Biol., 33, pp. 491-497Nayal, M., Di Cera, E., (1996) J. Mol. Biol., 256, pp. 228-234Otwinowski, Z., (1993) Proceedings of the CCP4 Study Weekend. Data Collection and Processing, pp. 56-62. , Warrington: Daresbury LaboratoryPan, H., Liu, X.L., Ou-Yang, L.L., Yang, G.Z., Zhou, Y.C., Li, Z.P., Wu, X.F., (1998) Toxicon, 36, pp. 1155-1163Pannu, N.S., Read, R.J., (1996) Acta Cryst., A52, pp. 659-668Perbandt, M., Wilson, J.C., Eschenburg, S., Mancheva, I., Aleksiev, B., Genov, N., Willingmann, P., Betzel, C., (1997) FEBS Lett, 412, pp. 573-577Polikarpov, I., Perles, L.A., De Oliveira, R.T., Oliva, G., Castellano, E.E., Garratt, R., Craievich, A., (1998) J. Synchrotron Rad., 5, pp. 72-76Polikarpov, I., Teplyakov, A., Oliva, G., (1997) Acta Cryst., D53, pp. 734-737Read, R.J., (1986) Acta Cryst., A42, pp. 140-149Renetseder, R., Brunie, S., Dijkstra, B.W., Drenth, J., Sigler, P.B., (1985) J. Biol. Chem., 260, pp. 11627-11634Rice, L.M., Brünger, A.T., (1994) Proteins, 19, pp. 277-290Rychlewski, L., Jaroszewski, L., Li, W., Godzik, A., (2000) Protein Sci., 9, pp. 232-241Sali, A., Blundell, T.L., (1993) J. Mol. Biol., 234, pp. 779-815Schevitz, R.W., (1995) Nature Struct. Biol., 2, pp. 458-465Scott, D.L., Otwinowski, Z., Gelb, M.H., Sigler, P.B., (1990) Science, 250, pp. 1563-1566Scott, D.L., Sigler, P.B., (1994) Adv. Protein Chem., 45, pp. 53-88Shimohigashi, Y., Tani, A., Matsumoto, H., Nakashima, K., Yamaguchi, Y., (1995) J. Biochem., 118, pp. 1037-1044Da Silva Giotto, M.T., Garratt, R.C., Oliva, G., Mascarenhas, Y.P., Giglio, J.R., Cintra, A.C., De Azevedo W.F., Jr., Ward, R.J., (1998) Proteins, 30, pp. 442-454Soares, A.M., Andriao-Escarso, S.H., Bortoleto, R.K., Rodrigues-Simioni, L., Arni, R.K., Ward, R.J., Gutierrez, J.M., Giglio, J.R., (2001) Arch. Biochem. Biophys., 387, pp. 188-196Toyama, M.H., Costa, P.D., Novello, J.C., De Oliveira, B., Giglio, J.R., Da Cruz-Hofling, M.A., Marangoni, S., (1999) J. Protein Chem., 18, pp. 371-378Toyama, M.H., Soares, A.M., Wen-Hwa, L., Polikarpov, I., Giglio, J.R., Marangoni, S., (2000) Biochimie, 82, pp. 245-250Tsai, I.H., Wang, Y.M., Au, L.C., Ko, T.P., Chen, Y.H., Chu, Y.F., (2000) Eur. J. Biochem., 267, pp. 6684-6691Vagin, A., Teplyakov, A., (1997) J. Appl. Cryst., 30, pp. 1022-1025Valdar, W.S., Thornton, J.M., (2001) J. Mol. Biol., 313, pp. 399-416Verity, M.A., (1992) Neurotoxicology, 13, pp. 139-147Ward, R.J., Alves, A.R., Ruggiero Neto, J., Arni, R.K., Casari, G.A., (1998) Protein Eng., 11, pp. 285-29

    Purification And Preliminary Crystallographic Analysis Of A New Lys49-pla2 From B. Jararacussu

    Get PDF
    BjVIII is a new myotoxic Lys49-PLA2 isolated from Bothrops jararacussu venom that exhibits atypical effects on human platelet aggregation. To better understand the mode of action of BjVIII, crystallographic studies were initiated. Two crystal forms were obtained, both containing two molecules in the asymmetric unit (ASU). Synchrotron radiation diffraction data were collected to 2.0 Å resolution and 1.9 Å resolution for crystals belonging to the space group P2 12 12 1 (a = 48.4 Å, b = 65.3 Å, c = 84.3 Å) and space group P3 121 (a = b = 55.7 Å, c = 127.9 Å), respectively. Refinement is currently in progress and the refined structures are expected to shed light on the unusual platelet aggregation activity observed for BjVIII. © 2008 by the authors; licensee Molecular Diversity Preservation International.95736750van Deenen, L., de Haas, G., Heemskerk, C.H., Hydrolysis of synthetic mixed-acid phosphatides by phospholipase A from human pancreas (1963) Biochim Biophys Acta, 67, pp. 295-304Higuchi, D.A., Barbosa, C.M.V., Bincoletto, C., Chagas, J.R., Magalhaes, A., Richardson, M., Sanchez, E.F., Pesquero, J., L.. Purification and partial characterization of two phospholipases A2 from Bothrops leucurus (white-tailed-jararaca) snake venom (2007) Biochimie, 89, pp. 319-328Maraganore, J.M., Merutka, G., Cho, W., Welches, W., Kézdy, F.J., Heinrikson, R.L., A new class of phospholipases A2 with lysine in place of aspartate 49. Functional consequences for calcium and substrate binding (1984) J Biol Chem, 259, pp. 13839-13843Nakai, M., Nakashima, K.I., Ogawa, T., Shimohigashi, Y., Hattori, S., Chang, C.C., Ohno, M., Purification and primary structure of a myotoxic lysine-49 phospholipase A2 with low lipolytic activity from Trimeresurus gramineus venom (1995) Toxicon, 33, pp. 1469-1478Koh, D.C.I., Armugam, A., Jeyaseelan, K., Snake venom components and their applications in biomedicine (2006) Cell Mol Life Sci, 63, pp. 3030-3041Andrião-Escarso, S.H., Soares, A.M., Fontes, M.R.M., Fuly, A.L., Corrêa, F.M.A., Rosa, J.C., Greene, L.J., Giglio, J., R.. Structural and functional characterization of an acidic platelet aggregation inhibitor and hypotensive phospholipase A(2) from Bothrops jararacussu snake venom (2002) Biochem Pharmacol, 64, pp. 723-732Fuly, A.L., Soares, A.M., Marcussi, S., Giglio, J.R., Guimarães, J.A., Signal transduction pathways involved in the platelet aggregation induced by a D-49 phospholipase A2 isolated from Bothrops jararacussu snake venom (2004) Biochimie, 86, pp. 731-739Magro, A.J., Murakami, M.T., Marcussi, S., Soares, A.M., Arni, R.K., Fontes, M.R.M., Crystal structure of an acidic platelet aggregation inhibitor and hypotensive phospholipase A2 in the monomeric and dimeric states: Insights into its oligomeric state (2004) Biochem Biophys Res Commun, 323, pp. 24-31Toyama, M.H., Carneiro, E.M., Marangoni, S., Barbosa, R.L., Corso, G., Boschero, A.C., Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets (2000) Biochim Biophys Acta, 1474, pp. 56-60Fonseca, F.V., Antunes, E., Morganti, R.P., Monteiro, H.S.A., Martins, A.M.C., Toyama, D.O., Marangoni, S., Toyama, M., H.. Characterization of a new platelet aggregating factor from crotoxin Crotalus durissus cascavella venom (2006) Protein J, 25, pp. 183-192Schägger, H., von Jagow, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa (1987) Anal Biochem, 166, pp. 368-379McPherson, A., Current approaches to macromolecular crystallization (1990) Eur J Biochem, 189, pp. 1-23Polikarpov, I., Oliva, G., Castellano, E.E., Garratt, R.C., Arruda, P., Leite, A., Craievich, A., The protein crystallography beamline at LNLS, the Brazilian National Synchrotron Light Source (1998) Nucl Instrum Methods Phys Res A, 405, pp. 159-164Polikarpov, I., Perles, L.A., de Oliveira, R.T., Oliva, G., Castellano, E.E., Garratt, R.C., Craievich, A.. Set-up and Experimental Parameters of the Protein Crystallography Beamline at the Brazilian National Synchrotron Laboratory (1998) J Synchrotron Radiat, 5, pp. 72-76Leslie, A.G., W.. The integration of macromolecular diffraction data (2006) Acta Crystallogr D Biol Crystallogr, 62, pp. 48-57Evans, P., Scaling and assessment of data quality (2006) Acta Crystallogr D Biol Crystallogr, 62, pp. 72-82Navaza, J., Implementation of molecular replacement in AMoRe (2001) Acta Crystallogr D Biol Crystallogr, 57, pp. 1367-1372Kozin, M.B., Svergun, D.I., Automated matching of high- and low-resolution structural models (2001) J Appl Crystallogr, 34, pp. 33-41CCP, Collaborative Computational Project, Number 4. The CCP4 suite: Programs for protein crystallography (1994) Acta Crystallogr D Biol Crystallogr, 50, pp. 760-763. , 4Winn, M., Dodson, E.J., Ralph, A., Collaborative computational project, number 4: Providing programs for protein crystallography (1997) Methods Enzymol, 277, pp. 620-633Spencer, P.J., Aird, S.D., Boni-Mitake, M., Nascimento, N., Rogero, J.R., A single-step purification of bothropstoxin-1 (1998) Braz J Med Biol Res, 31, pp. 1125-1127Soares, A.M., Guerra-Sá, R., Borja-Oliveira, C.R., Rodrigues, V.M., Rodrigues-Simioni, L., Rodrigues, V., Fontes, M.R.M., Giglio, J.R., Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A2 homologue from Bothrops neuwiedi pauloensis venom (2000) Arch Biochem Biophys, 378, pp. 201-209Arni, R.K., Ward, R.J., Gutiérrez, J.M., Tulinsky, A., Structure of a calcium-independent phospholipase-like myotoxic protein from Bothrops asper venom (1995) Acta Crystallogr D Biol Crystallogr, 51, pp. 311-317Murakami, M.T., Viçoti, M.M., Abrego, J.R.B., Lourenzoni, M.R., Cintra, A.C.O., Arruda, E.Z., Tomaz, M.A., Arni, R., K.. Interfacial surface charge and free accessibility to the PLA2-active site-like region are essential requirements for the activity of Lys49 PLA2 homologues (2007) Toxicon, 49, pp. 378-387Toyama, M.H., Soares, A.M., Vieira, C.A., Novello, J.C., Oliveira, B., Giglio, J.R., Marangoni, S.. Amino acid sequence of piratoxin-I, a myotoxin from Bothrops pirajai snake venom, and its biological activity after alkylation with p-bromophenacyl bromide (1998) J Protein Chem, 17, pp. 713-718Barbosa, P. S. F.Martins, A. M. C.Alves, R. S.Amora, D. N.Martins, R. D.Toyama, M. H.Havt, A.Nascimento, N. R. F.Rocha, V. L. C.Menezes, D. B.Fonteles, M. C.Monteiro, H. S. A. . The role of indomethacin and tezosentan on renal effects induced by Bothrops moojeni Lys49 myotoxin I. Toxicon 2006, 47, 831-837Kramer, R.M., Roberts, E.F., Manetta, J.V., Hyslop, P.A., Jakubowski, J., A.. Thrombin-induced phosphorylation and activation of Ca(2+)-sensitive cytosolic phospholipase A2 in human platelets (1993) J Biol Chem, 268, pp. 26796-26804Puri, R., N.. Phospholipase A2: Its role in ADP- and thrombin-induced platelet activation mechanisms (1998) Int J Biochem Cell Biol, 30, pp. 1107-1122Soares, A.M., Andrião-Escarso, S.H., Angulo, Y., Lomonte, B., Gutiérrez, J.M., Marangoni, S., Toyama, M.H., Giglio, J.R., Structural and functional characterization of myotoxin I, a Lys49 phospholipase A(2) homologue from Bothrops moojeni (Caissaca) snake venom (2000) Arch Biochem Biophys, 373, pp. 7-15Singh, N., Jabeen, T., Pal, A., Sharma, S., Perbandt, M., Betzel, C., Singh, T.P., Crystal structures of the complexes of a group IIA phospholipase A2 with two natural anti-inflammatory agents, anisic acid, and atropine reveal a similar mode of binding (2006) Proteins, 64, pp. 89-100Kini, R.M., Evans, H.J., A model to explain the pharmacological effects of snake venom phospholipases A2 (1989) Toxicon, 27, pp. 613-635Gutiérrez, J.M., Lomonte, B., Phospholipase A2 myotoxins from Bothrops snake venoms (1995) Toxicon, 33, pp. 1405-1424Ownby, C.L., de Araujo, H.S.S., White, S.P., Fletcher, J., E.. Lysine 49 phospholipase A2 proteins (1999) Toxicon, 37, pp. 411-445Yang, C. C.. In Venom Phospholipase A2 enzymes: Structure, Function and MechanismKini, R. M., Ed.John Wiley & Sons: UK, 1997Chapter Chemical modification and functional sites of phospholipases A2, p 185Stiles, B. G.Choumet, V.. In Venom Phospholipase A2 enzymes: Structure, Function and MechanismKini, R. M., Ed.John Wiley & Sons: UK, 1997Chapter Antibodies studies with venom phospholipases A2, p 223Matthews, B., W.. Solvent content of protein crystals (1968) J Mol Biol, 33, pp. 491-497Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D., J.. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Res, 25, pp. 3389-3402Magro, A.J., Soares, A.M., Giglio, J.R., Fontes, M.R.M., Crystal structures of BnSP-7 and BnSP-6, two Lys49-phospholipases A(2): Quaternary structure and inhibition mechanism insights (2003) Biochem Biophys Res Commun, 311, pp. 713-72

    Purification And N-terminal Sequencing Of Two Presynaptic Neurotoxic Pla2, Neuwieditoxin-i And Neuwieditoxin-ii, From Bothrops Neuwiedi Pauloensis (jararaca Pintada) Venom

    Get PDF
    Two presynaptic phospholipases A2 (PLA2), neuwieditoxin-I (NeuTX-I) and neuwieditoxin-II (NeuTX-II), were isolated from the venom of Bothrops neuwiedi pauloensis (BNP). The venom was fractionated using molecular exclusion HPLC (Protein-Pak 300SW column), followed by reverse phase HPLC (μBondapak C18 column). Tricine-SDS-PAGE in the presence or absence of dithiothreitol showed that NeuTX-I and NeuTX-II had a molecular mass of approximately 14 kDa and 28kDa, respectively. At 10μg/ml, both toxins produced complete neuromuscular blockade in indirectly stimulated chick biventer cervicis isolated preparation without inhibiting the response to acetylcholine, but NeuTX-II reduced the response to KCl by 67.0±8.0% (n=3; p<0.05). NeuTX-I and NeuTX-II are probably responsible for the presynaptic neurotoxicity of BNP venom in vitro. In fact, using loose patch clamp technique for mouse phrenic nerve-diaphragm preparation, NeuTX-I produced a calcium-dependent blockade of acetylcholine release and caused appearance of giant miniature end-plate potentials (mepps), indicating a pure presynaptic action. The N-terminal sequence of NeuTX-I was DLVQFGQMILKVAGRSLPKSYGAYGCYCGWGGRGK (71% homology with bothropstoxin-II and 54% homology with caudoxin) and that of NeuTX-II was SLFEFAKMILEETKRLPFPYYGAYGCYCGWGGQGQPKDAT (92% homology with Basp-III and 62% homology with crotoxin PLA2). The fact that NeuTX-I has Q-4 (Gln-4) and both toxins have F-5 (Phe-5) and Y-28 (Tyr-28) strongly suggests that NeuTX-I and NeuTX-II are Asp49 PLA2.131103121AIRD, S.D., KAISER II, LEWIS RV., KRUGGEL WG. A complete amino acid sequence for the basic subunit of crotoxin (1986) Arch. Biochem. Biophys, 249, pp. 296-300AIRD, S.D., KRUGGEL, W.G., KAISER II, Amino acid sequence of the basic subunit of Mojave toxin from the venom of the Mojave rattlesnake (Crotalus s. scutulatus) (1990) Toxicon, 28, pp. 669-673BEGHINI, D.G., TOYAMA, M.H., HYSLOP, S., SODEK, L., NOVELLO, J.C., MARANGONI, S., Enzymatic characterization of a novel phospholipase A2 from Crotalus durissus cascavella rattlesnake (maracambóia) venom (2000) J. Protein Chem, 19, pp. 603-607BORJA-OLIVEIRA, C.R., DURIGON, A.M., VALLIN, A.C.C., TOYAMA, M.H., SOUCCAR, C., MARANGONI, S., RODRIGUES-SIMIONI, L., The pharmacological effects of Bothrops neuwiedi pauloensis (jararaca-pintada) snake venom on avian neuromuscular transmission (2003) Braz. J. Med. Biol. Res, 36, pp. 617-624BORJA-OLIVEIRA, C.R., SOARES, A.M., ZAMUNER, S.R., HYSLOP, S., GIGLIO, J.R., PRADO-FRANCESCHI, J., RODRIGUES-SIMIONI, L., Intraspecific variation in the neurotoxic and myotoxic activities of Bothrops neuwiedi snake venoms (2002) J. Venom. Anim. Toxins, 8, pp. 88-101BUCARETCHI, F., HERRERA, S.R.F., HYSLOP, S., BARACAT, E.C.E., VIEIRA, R.J., Snakebites by Bothrops spp in children in Campinas, São Paulo, Brazil (2001) Rev. Inst. Med. Trop. São Paulo, 43, pp. 329-333CHO, W., KEZDY, F.J., Chromogenic substrate and assay of phospholipase A 2 (1991) Meth. Enzymol, 197, pp. 75-79CINTRA, A.C., MARANGONI, S., OLIVEIRA, B., GIGLIO, J.R., Bothropstoxin-I: Amino acid sequence and function (1993) J. Protein Chem, 12, pp. 57-64COGO, J.C., PRADO-FRANCESCHI, J., CRUZ-HÖFLING, M.A., CORRADO, A.P., RODRIGUES-SIMIONI, L., Effects of Bothrops insularis on the mouse and chick nerve-muscle preparation (1993) Toxicon, 31, pp. 1237-1247COGO, J.C., PRADO-FRANCESCHI, J., GIGLIO, J.R., CORRADO, A.P., CRUZ-HÖFLING, M.A., DONATO, J.L., LEITE, G.B., RODRIGUES-SIMIONI, L., An unusual presynaptic action of Bothrops insularis snake venom mediated by phospholipase A2 fraction (1998) Toxicon, 36, pp. 1323-1332DE SOUSA, M.V., MORHY, L., ARNI, R.K., WARD, R.J., GUTIÉRREZ, J.M., Amino acid sequence of a myotoxic Lys-49-phospholipase A2 homologue from the venom of Cerrophidion (Bothrops) godmani (1998) Biochim. Biophys. Acta, 1384, pp. 204-208DURIGON, A.M., BORJA-OLIVEIRA, C.R., DAL, B.C., OSHIMA-FRANCO, Y., COGO, J.C., LAPA, A.J., SOUCCAR, C., RODRIGUES-SIMIONI, L., Neuromuscular activity of Bothrops neuwiedi pauloensis snake venom in mouse nerve-muscle preparations (2005) J. Venom. Anim. Toxins incl. Trop. Dis, 11, pp. 22-33FONTES, M.R., SOARES, A.M., RODRIGUES, V.M., FERNANDES, A.C., DA SILVA, R.J., GIGLIO, J.R., Crystallization and preliminary X-ray diffraction analysis of a myotoxic phospholipase A(2) homologue from Bothrops neuwiedi pauloensis venom (1999) Biochim. Biophys. Acta, 1432, pp. 393-395FRANCIS, B., GUTIERREZ, J.M., LOMONTE, B., KAISER II, Myotoxin II from Bothrops asper (Terciopelo) venom is a lysine-49 phospholipase A 2 (1991) Arch. Biochem. Biophys, 284, pp. 352-359GEOGHEGAN, P., ANGULO, Y., CANGELOSI, A., DIAZ, M., LOMONTE, B., Characterization of a basic phospholipase A2-homologue myotoxin isolated from the venom of the snake Bothrops neuwiedii (yarara chica) from Argentina (1999) Toxicon, 37, pp. 1735-1746GINSBORG, B.L., WARRINER, J., The isolated chick biventer cervicis nerve-muscle preparation (1960) Brit. J. Pharmacol, 15, pp. 410-411HALPERT, J., EAKER, D., Amino acid sequence of a presynaptic neurotoxin from the venom of Notechis scutatus scutatus (Australian tiger snake) (1975) J. Biol. Chem, 250, pp. 6990-6997HARVEY AL., BARFARAZ A., THOMPSON E., FAIZ A., PRESTON S., HARRIS JB. Screening of snake venoms for neurotoxic and myotoxic effects using simple in vitro preparations from rodents and chicks. Toxicon, 1994, 32, 257-65HELUANY, N.F., HOMSI-BRANDEBURGO, M.I., GIGLIO, J.R., PRADO-FRANCESCHI, J., RODRIGUES-SIMIONI, L., Effects induced by bothropstoxin, a component from Bothrops jararacussu snake venom, on mouse and chick muscle preparations (1992) Toxicon, 30, pp. 1203-1210HOLZER, M., MACKESSY, S.P., An aqueous endpoint assay of snake venom phospholipase A2 (1995) Toxicon, 35, pp. 1149-1155HOMSI-BRANDEBURGO, M.I., QUEIROZ, L.S., SANTO-NETO, H., RODRIGUES-SIMIONI, L., GIGLIO, J.R., Fractionation of Bothrops jararacussu snake venom: Partial chemical characterization and biological activity of bothropstoxin (1988) Toxicon, 26, pp. 615-627JOHNSON, E.K., OWNBY, C.L., Isolation of a myotoxin from the venom of Agkistrodon contortrix laticinctus (broad-banded copperhead) and pathogenesis of myonecrosis induced by it in mice (1993) Toxicon, 31, pp. 243-255KAISER II, Gutierrez, J.M., Plummer, D., Aird, S.D., Odell, G.V., AIRD SD., ODELL GV. The amino acid sequence of a myotoxic phospholipase from the venom of Bothrops asper (1990) Arch. Biochem. Biophys, 278, pp. 319-325KATZ, B., MILEDI, R., The binding of acetylcholine to receptors and its removal from the synaptic cleft (1973) J. Physiol, 231, pp. 549-574KINI RM. Phospholipase A2 - A complex multifunctional protein puzzle. In: KINI RM. Ed., Venom phosholipase A2 enzymes. Structure, function and mechanism. New York: John Wiley &ampSons Inc Chichester, 1997, 1-28KONDO, K., NARITA, K., LEE, C.Y., Amino acid sequences of the two polypeptide chains in beta1-bungarotoxin from the venom of Bungarus multicinctus (1978) J. Biochem, 83, pp. 101-115KONDO, K., TODA, H., NARITA, K., LEE, C.Y., Amino acid sequence of β2-bungarotoxin from Bungarus multicinctus venom: The amino acid substitutions in the B chains (1982) J. Biochem, 91, pp. 1519-1530KONDO, K., ZHANG, J., XU, K., KAGAMIYAMA, H., Amino acid sequence of a presynaptic neurotoxin, agkistrodotoxin, from the venom of Agkistrodon halys pallas (1989) J. Biochem, 105, pp. 196-203KORDAS, M., On the role of junctional cholinesterase in determining the time course of the end-plate current (1977) J. Physiol, 270, pp. 133-150LEE, C.Y., HO, C.L., BOTES, D.P., Site of action of caudoxin, a neurotoxic phospholipase A2 from the horned puff adder (Bitis caudalis) venom (1982) Toxicon, 20, pp. 637-647LIND, P., EAKER, D., Amino-acid sequence of the alpha-subunit of taipoxin, an extremely potent presynaptic neurotoxin from the Australian snake taipan (Oxyuranus s. scutellatus) (1982) European J. Biochem, 124, pp. 441-447MAGRO, A.J., SOARES, A.M., GIGLIO, J.R., FONTES, M.R., Crystal structures of BnSP-7 and BnSP-6, two Lys49 phospholipases A2: Quartenary structure and inhibition mechanism insights (2003) Biochem. Biophys. Res. Commun, 311, pp. 713-720MONTECUCCO, C., ROSSETTO, O., How do presynaptic PLA2 neurotoxins block nerve terminals? (2000) Trends Biochem. Sciences, 25, pp. 266-270OSHIMA-FRANCO, Y., HYSLOP, S., CINTRA, A.C., GIGLIO, J.R., DA CRUZ-HOFLING, M.A., RODRIGUES-SIMIONI, L., Neutralizing capacity of commercial bothropic antivenom against Bothrops jararacussu venom and bothropstoxin-I (2000) Muscle Nerve, 23, pp. 1832-1839OSHIMA-FRANCO, Y., LEITE, G.B., SILVA, G.H., CARDOSO, D.F., HYSLOP, S., GIGLIO, J.R., DA CRUZ-HOFLING, M.A., RODRIGUES-SIMIONI, L., Neutralization of the pharmacological effects of bothropstoxin-I from Bothrops jararacussu (jararacuçu) venom by crotoxin antiserum and heparin (2001) Toxicon, 39, pp. 1477-1485PEREIRA, M.F., NOVELLO, J.C., CINTRA, A.C., GIGLIO, J.R., LANDUCCI, E.T., OLIVEIRA, B., MARANGONI, S., The amino acid sequence of bothropstoxin-II, an Asp-49 myotoxin from Bothrops jararacussu (jararacuçu) venom with low phospholipase A2 activity (1998) J. Protein Chem, 17, pp. 381-386RE, L., BAROCCI, S., CAPITANI, C., VIVANI, C., RICCI, M., RINALDI, L., PAOLUCCI, G., MORALES, M.A., Effects of some natural extracts on the acetylcholine release at the mouse neuromuscular junction (1999) Pharmacol. Res, 39, pp. 239-245RE, L., COLA, V., FULGENZI, G., MARINELLI, F., CONCETTONI, C., ROSSINI, L., Postsynaptic effects of methoctramine at the mouse neuromuscular junction (1993) Neuroscience, 57, pp. 451-457RE, L., GIUSTI, P., CONCETTONI, C., DI SARRA, B., Computerized estimation of spontaneous and evoked acetylcholine release at the neuromuscular junction (1989) J. Pharmacol. Meth, 22, pp. 233-242RE, L., MORETTI, V., ROSSINI, L., GIUSTI, P., Sodium-activated potassium current in mouse diaphragm (1990) FEBS Lett, 270, pp. 195-197RIBEIRO, L.A., ALBUQUERQUE, M.J., PIRES DE CAMPOS VAF., KATZ G., TAKAOKAM NY., LEBRÃO ML., JORGE MT. Óbitos por serpentes peçonhentas no Estado de São Paulo: Avaliação de 43 casos, 1988/98 (1998) Rev. Assoc. Méd. Bras, 44, pp. 312-318RITONJA A., GUBENSEK F. Ammodytoxin A, a highly lethal phospholipase A2 from Vipera ammodytes ammodytes venom. Biochim. Biophys. Acta, 1985, 828, 306-12RODRIGUES-SIMIONI, L., BORGESE, N., CECCARELLI, B., The effects of Bothrops jararacussu venom and its components on frog nerve-muscle preparation (1983) Neuroscience, 10, pp. 475-489RODRIGUES-SIMIONI, L., ZAMUNER, S.R., COGO, J.C., BORJA-OLIVEIRA, C.R., PRADO-FRANCESCHI, J., CRUZ-HOFLING, M.A., CORRADO, A.P., Pharmacological evidence for a presynaptic action of venoms from Bothrops insularis (jararaca ilhoa) and Bothrops neuwiedi (jararaca pintada) (2004) Toxicon, 43, pp. 633-638SCHAGGER, H., VON JAGOW, G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa (1987) Anal. Biochem, 166, pp. 368-379SOARES, A.M., GUERRA-SÁ, R., BORJA-OLIVEIRA, C.R., RODRIGUES, V.M., RODRIGUES-SIMIONI, L., RODRIGUES, V., FONTES, M.R.M., GIGLIO, J.R., Structural and functional characterization of BnSP-7, a Lys49 myotoxic phospholipase A2 homologue from Bothrops neuwiedi venom (2000) Arch. Biochem. Biophys, 378, pp. 201-209STÜHMER, W., ROBERTS, W.M., ALMERS, W., The loose patch clamp (1983) Single Channel Recording, p. 123. , SAKMANN B AND NEHER E, Eds, Plenum Press, New York;TOYAMA, M.H., SOARES, A.M., WEN-HWA, L., POLIKARPOV, I., GIGLIO, J.R., MARANGONI, S., Amino acid sequence of piratoxin-II, a myotoxic lys49 phospholipase A 2 homologue from Bothrops pirajai venom (2000) Biochimie, 82, pp. 245-250TSAI, I.H., LU, P.J., WANG, Y.M., HO, C.L., LIAW, L.L., Molecular cloning and characterization of a neurotoxic phospholipase A2 from the venom of Taiwan habu (Trimeresurus mucrosquamatus) (1995) Biochem. J, 311, pp. 895-900VAN DEN BERGH, C.J., SLOTBOOM, A.J., VERHEIJ, H.M., DE HAAS, G.H., The role of aspartic acid-49 in the active site of phospholipase A2. A site-specific mutagenesis study of porcine pancreatic phospholipase A 2 and the rationale of the enzymatic activity of Lys-49 phospholipase A2 from Agkistrodon piscivorus piscivorus venom (1988) European J. Biochem, 176, pp. 353-357VAN DEENEN LL, D.H.G., The substrate specificity of phospholipases A2 (1963) Biochim. Biophys. Acta, 70, pp. 538-553VILJOEN, C.C., BOTES, D.P., KRUGER, H., Isolation and amino acid sequence of caudoxin, a presynaptic acting toxic phospholipase A2 from the venom of the horned puff adder (Bitis caudalis) (1982) Toxicon, 20, pp. 715-737ZAMUNER, S.R., PRADO-FRANCESCHI, J., RODRIGUES-SIMIONI, L., The screening of Bothrops venoms for neurotoxic activity using the chick biventer cervicis preparation (1996) Toxicon, 34, pp. 314-31

    Biological And Structural Characterization Of A New Pla 2 From The Crotalus Durissus Collilineatus Venom

    No full text
    In the present article we report on the biological characterization and amino acid sequence of a new basic Phospholipases A 2 (PLA 2) isolated from the Crotalus durissus collilineatus venom (Cdcolli F6), which showed the presence of 122 amino acid residues with a pI value of 8.3, molecular mass of 14 kDa and revealed an amino acid sequence identity of 80 with crotalic PLA 2s such as Mojave B, Cdt F15, and CROATOX. This homology, however, dropped to 50 if compared to other sources of PLA 2s such as from the Bothrops snake venom. Also, this PLA 2 induced myonecrosis, although this effect was lower than that of BthTx-I or whole crotoxin and it was able to induce a strong blockage effect on the chick biventer neuromuscular preparation, independently of the presence of the acid subunid (crotapotin). The neurotoxic effect was strongly reduced by pre-incubation with heparin or with anhydrous acetic acid and q-BPB showed a similar reduction. The q-BPB did not reduce significantly the myotoxic activity induced by the PLA 2, but the anhydrous acetic acid treatment and the pre-incu-bation of PLA 2 with heparin reduced significantly its effects. This protein showed a strong antimicrobial activity against Xanthomonas axonopodis passiflorae (Gram-negative), which was drastically reduced by incubation of this PLA 2 with q-BPB, but this effect was marginally reduced after treatment with anhydrous acetic acid. Our findings here allow to speculate that basic amino acid residues on the C-terminal and molecular regions near catalytic site regions such as Calcium binding loop or b-wing region may be involved in the binding of this PLA 2 to the molecular receptor to induce the neurotoxic effect. The bactericidal effect, however, was completely dependent on the enzymatic activity of this protein. © 2005 Springer Science+Business Media, Inc.242103112Aguiar, A.S., Alves, C.R., Melgarejo, A., Giovanni-De-Simone, S., (1996) Toxicon, 34, pp. 555-565Babu, A.S., Gowda, T.V., (1994) Toxicon, 32, pp. 749-752Bon, C., Changeux, J.P., Jeng, T.W., Fraenkel-Conrat, H., (1979) Eur. J. Biochem., 99, pp. 471-481Breithaupt, H., (1976) Toxicon, 14, pp. 221-233Condrea, E., Fletcher, J.E., Rapuano, B.E., Yang, C.C., Rosenberg, P., (1981) Toxicon, 19, pp. 705-720Dennis, E.A., (1997) Trends Biochem. Sci., 22, pp. 1-12Faure, G., Bon, C., (1988) Biochemistry, 27, pp. 730-738Fuentes, L., Hernandez, M., Nieto, M.L., Sanchez-Crespo, M., (2002) FEBS Lett., 531, pp. 7-11Gowda, T.V., Middlebrook, J.L., (1994) Toxicon, 32, pp. 955-964Habermann, E., Breithaupt, H., (1978) Toxicon, 16, pp. 19-30Holzer, M., MacKessy, S.P., (1996) Toxicon, 34, pp. 1149-1155Kudo, I., Murakami, M., (2002) Prostag. Oth. Lipid Mediat., 68, pp. 3-58. , 69Lambeau, G., Lazdunski, M., (1999) TIPS, 20, pp. 162-170Landucci, E.C., Condino-Neto, A., Perez, A.C., Hyslop, S., Corrado, A.P., Novello, J.C., Marangoni, S., Denucci, G., (1994) Toxicon, 32, pp. 217-226Lomonte, B., Angulo, Y., Calderon, L., (2003) Toxicon, 42, pp. 885-901Murakami, M., Kudo, I., (2002) J. Biochem (Tokyo), 131, pp. 285-292Oliveira, D.G., Toyama, M.H., Novello, J.C., Beriam, L.O., Marangoni, S., (2002) J. Protein Chem, 21, pp. 161-168Prijatelj, P., Sribar, J., Ivanovski, G., Krizaj, I., Gubensek, F., Pungercar, J., (2003) Eur. J. Biochem., 270, pp. 3018-3025Schagger, H., Von Jagow, G., (1987) Anal. Biochem., 166, pp. 368-379Scott, D.L., Achari, A., Vidal, J.C., Sigler, P.B., (1992) J. Biol. Chem., 267, pp. 22645-22657Soares, A.M., Marcussi, S., Stabeli, R.G., Franca, S.C., Giglio, J.R., Ward, R.J., Arantes, E.C., (2003) Biochem. Biophys. Res. Commun., 302, pp. 193-200Soares, A.M., Andrião-Escaso, S.H., Angulo, Y., Lomonte, B., Gutierrez, J.M., Marangoni, S., Toyama, M.H., Giglio, J.R., (2000) Arch. Biochem. Biophys., 373, pp. 7-15Toyama, M.H., Costa, P.D., Novello, J.C., Oliveira, B., Giglio, J.R., Cruz-Höfling, M.A., Marangoni, S., (1999) J. Protein Chem, 18, pp. 371-378Toyama, M.H., Deoliveira, D.G., Beriam, L.O., Novello, J.C., Rodrigues-Simioni, L., Marangoni, S., (2003) Toxicon, 41, pp. 1033-1038Verheij, H.M., Volwerk, J.J., Jansen, E.H., Puyk, W.C., Dijkstra, B.W., Drenth, J., De Haas, G.H., (1980) Biochemistry, 19, pp. 743-750Yang, C.C., (1997) Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, pp. 185-204. , Kini, R. M. (ed.), Wiley, Chichester U

    Characterization of a new platelet aggregating factor from crotoxin Crotalus durissus cascavella venom

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOIn this article we investigated the platelet aggregating activity of whole crotoxin and its subunits isolated from Crotalus durissus cascavella venom. During the purification protocols of the venom, using HPLC molecular exclusion, we detected the presence of two different serine protease activities in the gyroxin fraction, and another in the crotoxin fraction, which induced strong and irreversible platelet aggregation, in addition to blood coagulation. From crotoxin, we isolated PLA(2), crotapotin (both fractions corresponding approximately 85% of whole crotoxin) and another minor fraction (F20) that exhibited serine protease activity. After a new fractionation on reverse phase HPLC chromatography, we obtained three other fractions named as F201, F202 and F203. F202 was obtained with high degree of molecular homogeneity with molecular mass of approximately 28 kDa and a high content of acidic amino residues, such as aspartic acid and glutamic acid. Other important amino acids were histidine, cysteine and lysine. This protein exhibited a high specificity for BApNA, a Michaelis-Menten behavior with Vmax estimated in 5.64 mu M/min and a Km value of 0.58 mM for this substrate. In this work, we investigated the ability of F202 to degrade fibrinogen and observed alpha and beta chain cleavage. Enzymatic as well as the platelet aggregation activities were strongly inhibited when incubated with TLCK and PMSF, specific inhibitors of serine protease. Also, F202 induced platelet aggregation in washed and platelet-rich plasma, and in both cases, TLCK inhibited its activity. The N-terminal amino acid sequence of F202 presented a high amino acid sequence homology with other thrombin-like proteins, but it was significantly different from gyroxin. These results showed that crotoxin is a highly heterogeneous protein composed of PLA(2), thrombin-like and other fractions that might explain the diversity of physiological and pharmacological activities of this proteinSpringer253183192FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2004/00040-3300211.2004New York, N

    Structural And Functional Characterization Of Basic Pla2 Isolated From Crotalus Durissus Terrificus Venom

    No full text
    The venom of Crotalus durissus terrificus was fractionated by reverse-phase HPLC to obtain crotapotins (F5 and F7) and PLA2 (F15, F16, and F17) of high purity. The phospholipases A2 (PLA2s) and crotapotins showed antimicrobial activity against Xanthomonas axonopodis pv. passiflorae, although the unseparated crotoxin did not. The F17 of the PLA 2 also revealed significant anticoagulant activity, althrough for this to occur the presence of Glu 53 and Trp 61 is important. The F17 of the PLA2 showed allosteric behavior in the presence of a synthetic substrate. The amino acid sequence of this PLA2 isoform, determined by automatic sequencing, was HLLQFNKMLKFETRK NAVPFYAFGCYCGWGGQRRPKDATDRCCFVHDCCYEKVTKCNTKWDFYRYSLKSGY ITCGKGTWCKEQICECDRVAAECLRRSLSTYKNEYMFYPDSRCREPSETC. Analysis showed that the sequence of this PLA2 isoform differed slightly from the amino acid sequence of the basic crotoxin subunit reported in the literature. The homology with other crotalid PLA2 cited in the lit-erature varied from 60% to 90%. The pL was estimated to be 8.15, and the calculated molecular weight was 14664.14 as determined by Tricine SDS-PAGE, two-dimensional electrophoresis, and MALDI-TOFF. These results also suggested that the enzymatic activity plays an important role in the bactericidal effect of the F17 PLA2 as well as that of anticoagulation, although other regions of the molecule may also be involved in this biological activity. © 2002 Plenum Publishing Corporation.213161168Aird, S.D., Kaiser, I.I., (1985) Biochemistry, 24, pp. 7054-7058Aird, S.D., Kruggel, W.G., Kaiser, I.I., (1985) Toxicon, 28, pp. 669-673Anderson, N.L., Anderson, N.G., (1991) Electrophoresis, 12, pp. 883-906Beghini, D.G., Toyama, M.H., Hyslop, S., Sodek, L., Novello, J.C., Marangoni, S., (2000) J. Prot. Chem., 19, pp. 603-607Breithaupt, H., (1976) Toxicon, 14, pp. 221-233Carredano, B., Westerlind, B., Persson, M., Saareinen, S., Ramaswamy, D., Eaker, H., Eklund, M.W., (1998) Toxicon, 36, pp. 75-92Cho, W., Kezdy, F.J., (1991) Methods Enzymol., 23, pp. 75-79Faure, G., Choumet, V., Bouchier, C., Camoin, L., Guillaume, J.L., Monegier, B., Vuilhorgne, M., Bon, C., (1994) Eur. J. Biochem., 223, pp. 161-164Faure, G., Guillaume, J.L., Camoin, L., Saliou, B., Bon, C., (1991) Biochemistry, 30, pp. 8074-8083Gutierrez, J.M., Lomonte, B., (1995) Toxicon., 33, pp. 1405-1424Habermann, E., Breithaupt, H., (1978) Toxicon., 16, pp. 19-30Hendon, R.A., Fraenkel-Conrat, H., (1976) Toxicon., 14, pp. 283-289Holzer, M., Mackessy, S.P., (1996) Toxicon., 34, pp. 1149-1155Kini, R.M., Evans, H.J., (1989) Toxicon., 27, pp. 613-635Kini, R.M., Evans, H.J., (1987) J. Biol. Chem., 262, pp. 14402-14407Lambeau, G., Ancian, P., Nicolas, J.P., Cupillard, L., Zvaritch, E., Lazdunski, M., (1996) Seances Soc. Biol. Fil., 190, pp. 425-435Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L.A., Maccarana, M., (1994) J. Biol. Chem., 269, pp. 29867-29873Paramo, L., Lomonte, B., Pizarro-Cerda, J., Bengoechea, J.A., Gorvel, J.P., Moreno, E., (1998) Eur. J. Biochem., 253, pp. 452-461Pieterson, W.A., Volwerk, J.J., Haas, G.H., (1974) Biochemistry, 13, pp. 1439-1445Rubsamen, K., Breithaupt, H., Habermann, E., (1971) Arch. Pharmacol., 270, pp. 274-288Schagger, H., Von Jagow, G., (1987) Anal. Biochem., 166, pp. 368-379Selistre De Araujo, H.S., White, S.P., Ownby, C.L., (1996) Arch. Biochem. Biophys., 326, pp. 21-30Shiomi, K.A., Kazama, A., Shimakura, K., Nagashima, Y., (1998) Toxicon, 36, pp. 589-599Soares, A.M., Andrião-Escaso, S.H., Bortoleto, R.K., Rodrigues-Simioni, L., Arni, R.K., Ward, R.J., Gutierrez, J.M., Giglio, J.R., (2001) Arch. Biochem. Biophys., 387, pp. 188-196Toyama, M.H., Soares, A.M., Wen-Hwa, L., Polikarpov, I., Giglio, J.R., Marangoni, S., (2000) Biochimie, 82, pp. 245-250Verheij, H.M., Boffa, M.C., Rothen, C., Bryckaert, M.C., Verger, R., De Hass, G.H., (1980) Eur. J. Biochem., 112, pp. 25-32Zhao, K., Zhou, Y., Lin, Z., (2000) Toxicon., 38, pp. 901-91

    An Evaluation Of 3-rhamnosylquercetin, A Glycosylated Form Of Quercetin, Against The Myotoxic And Edematogenic Effects Of Spla 2 From Crotalus Durissus Terrificus

    No full text
    This paper shows the results of quercitrin effects on the structure and biological activity of secretory phospholipase (sPLA2) from Crotalus durissus terrificus, which is the main toxin involved in the pharmacological effects of this snake venom. According to our mass spectrometry and circular dichroism results, quercetin was able to promote a chemical modification of some amino acid residues and modify the secondary structure of C. d. terrificus sPLA2. Moreover, molecular docking studies showed that quercitrin can establish chemical interactions with some of the crucial amino acid residues involved in the enzymatic activity of the sPLA2, indicating that this flavonoid could also physically impair substrate molecule access to the catalytic site of the toxin. Additionally, in vitro and in vivo assays showed that the quercitrin strongly diminished the catalytic activity of the protein, altered its Vmax and Km values, and presented a more potent inhibition of essential pharmacological activities in the C. d. terrificus sPLA2, such as its myotoxicity and edematogenic effect, in comparison to quercetin. Thus, we concluded that the rhamnose group found in quercitrin is most likely essential to the antivenom activities of this flavonoid against C. d. terrificus sPLA2. © 2014 Daniela de Oliveira Toyama et al

    Renal Effects Of Supernatant From Macrophages Activated By Crotalus Durissus Cascavella Venom: The Role Of Phospholipase A2 And Cyclooxygenase

    No full text
    In Brazil, the genus Crotalus is responsible for approximately 1500 cases of snakebite annually. The most common complication in the lethal cases is acute renal failure, although the mechanisms of the damaging effects are not totally understood. In this work, we have examined the renal effects caused by a supernatant of macrophages stimulated by Crotalus durissus cascavella venom as well as the potential role of phospholipase A2 and cyclo-oxygenase. Rat peritoneal macrophages were collected and placed in a RPMI medium and stimulated by crude Crotalus durissus cascavella venom (1, 3 or 10 μg/ml) for 1 hr. They were then washed and kept in a culture for 2 hr. The supernatant (1 ml) was tested in an isolated perfused rat kidney. The first 30 min. of each experiment were used as an internal control, and the supernatant was added to the system after this period. All experiments lasted 120 min. A study of toxic effect on perfusion pressure, glomerular filtration rate, urinary flow, percent of sodium tubular transport and percent of proximal tubular sodium transport was made. The lowest concentration of venom (1 μg/ml) was not statistically different from the control values. The most intense effects were seen at 10 μg/ml for all renal parameters. The infusion of the supernatant of macrophages stimulated with crude venom (3 or 10 μg/ml) increased the perfusion pressure, glomerular filtration rate and urinary flow, decreased the percent of sodium tubular transport and percent of proximal tubular sodium transport. Dexamethasone (10 μM) and quinacrine (10 μM) provided protection against the effect of the venom on glomerular filtration rate, urinary flow, percent of sodium tubular transport, percent of proximal tubular sodium transport and perfusion pressure. Indomethacin (10 μM) and nordiidroguaretic acid (1 μM) reversed almost all functional changes, except those of the perfusion pressure. These results suggest that macrophages stimulated with Crotalus durissus cascavella venom release mediators capable of promoting nephrotoxicity in vitro. Moreover, phospholipase A2 and cyclooxygenase products are involved in these biologic effects.9211420Azar, S., Tobian, T., Ishii, M., Prolonged water diuresis affecting solutes and intersticial cells of renal papilla (1971) Amer. J. Physiol., 221, pp. 75-79Balhlmann, J., Giebisch, G., Ochwadt, B., Micropuncture study of isolated perfused rat kidney (1967) Amer. J. Physiol., 212, pp. 77-82Barnes, P.J., Adcock, I., Anti-inflammatory actions of steroids: Molecular mechanisms (1993) Trends Pharmacol. Sci., 14, pp. 436-441Barraviera, B., Curso sobre acidentes pot animais peçonhentos: Acidentes por serpente do gênero crotalus (1989) Arq. Bras. Med., 64, pp. 14-20Bowman, R.H., Gluconeogenesis in the isolated perfused rat kidney (1970) J. Biol. Chem., 245, pp. 1604-1612Ferreira, S.H., Are macrophages the body's alarme cells? (1980) Agents Actions, 10, pp. 229-230Ferreira, M.L., Moura-da-Silva, A.M., França, F.O.S., Cardoso, J.L., Mota, I., Toxic activities of venoms from nine Bothrops species and their correlation with lethality and necrosis (1992) Toxicon, 30, pp. 1603-1608Fonteles, M.C., Forti, C.A., The effect of indomethacin and reserpine on renal vascular escape (1993) Chem. Pathol. Pharmacol., 81, pp. 103-110Fonteles, M.C., Cohen, J.J., Black, A.J., Wertheim, S.J., Support of renal kidney function by long-chain fatty acids derived from renal tissue (1983) Amer. J. Physiol., 244, pp. 235-246Fonteles, M.C., Greenberg, R.N., Monteiro, H.S.A., Currie, M.G., Forte, L.R., Natriuretic and Kaliuretic activies of guanylin and uroguanylin in the isolated perfused rat kidney (1998) Amer. J. Physiol., 44, pp. 191-197Greg, G.M., Cohen, J.J., Black, A.Y., Espeland, M.A., Feldstain, M.C., Effects of glucose and insulin metabolism and function of perfused rat kidney (1978) Amer. J. Physiol., 235, pp. 52-61Gutiérrez, J.M., Lomonte, B., Local tissue damage induced by Bothrops snake venoms (1989) Mem. Inst. Butantan, 51, pp. 211-233Hamilton, R.L., Benny, N.M., Williams, M.C., Severin-Ghaus, E.M.A., Simple and inexpensive membrane "lung" for small or-gan perfusion (1974) J. Lipid. Res., 15, pp. 182-186Hanson, R.W., Ballard, F.S., Citrate, pyruvate and lactate contaminants of commercial serum albumin (1968) J. Lipid. Res., 9, pp. 667-668Korzeniewski, C., Callewaert, D.M., An enzyme-release assay for natural cytotoxicity (1983) J. Immunol. Meth., 64, pp. 313-320Laskin, D.L., Pendino, K.J., Macrophages and anti-inflammatory mediators in tissue injury (1995) Annu. Rev Pharmacol. Toxicol., 35, pp. 655-677Lima, A.A.M., Monteiro, H.S.A., Fonteles, M.C., The effects of Escherichia coli heat-stable enterotoxin in renal sodium tubular transport (1992) Pharmacology & Toxicology, 70, pp. 163-167Mancin, A.C., Soares, A.M., Andriao-Escarso, S.H., Faca, V.M., Greene, L.J., Zuccolotto, S., Pela, I.R., Giglio, J., The analgesic activity of crotamine, a neurotoxin from Crotalus durissus terrificus (South American rattlesnake) venom: A biochemical and pharmacological study (1998) Toxicon, 36, pp. 1927-1937Marshall, J.S., Leal Berumen, I., Nielsen, L., Glibetic, M., Jordana, M., Interleukin (IL)-10 inhibits long-term IL-6 production but not performed mediator release from rat peritoneal mast cell (1996) J. Clin. Invest., 97, pp. 1122-1128Martins, A.M.C., Monteiro, H.S.A., Júnior, E.O.G., Menezes, D.B., Fonteles, M.C., Effects of Crotalus durissus cascavella venom in the isolated rat kidney (1998) Toxicon, 36, pp. 1441-1450Monteiro, H.S.A., Da Silva, I.M.S.C., Martins, A.M.C., Fonteles, M.C., Effects of Crotalus durissus terrificus venom and crotoxin on the isolated rat kidney (2001) Braz. J. Med. Biol. Res., 34, pp. 1347-1352Nancy, G., Ahlstrom, M.D., Luginbuhl, M.D.W., Tisher, M.D.C., Acute anuric renal failure after pygmy rattlesnake bite (1991) South. Med. J., 84, pp. 783-785Nathan, C.F., Secretory products of macrophages (1987) J. Clin. Invest., 79, pp. 319-326Nishiitsutji-Uwo, G.M., Ross, B.D., Krebs, H.A., Metabolic activities of the isolated perfused rat kidney (1967) Biochem. J., 103, pp. 852-862Pegg, D.E., Vascular resistance of the isolated rabbit kidney (1971) Cryobiology, 8, pp. 431-440Ribeiro, L.A., Albuquerque, M.J., De Campos, V.A., Katz, G., Takaoka, N.Y., Lebrao, M.L., Jorge, M.T., Deaths caused by venomous snakes in the State of São Paulo: Evaluation of 43 cases from 1988 to 1993 (1998) Rev Assoc. Med. Bras., 44, pp. 312-318Ribeiro, R.A., Flores, C.A., Cunha, F.Q., Ferreira, S.H., IL-8 causes in vivo neutrophil migration by a cell dependent mechanism (1991) Imunology, 73, pp. 472-477Rocha, M.F.G., Soares, A.M., Flores, C.A., Steiner, T.S., Lyerly, D.M., Guerrant, R.L., Ribeiro, R.A., Lima, A.A.M., Intestinal secretory factor released by macrophages stimulated with Clostridium difficile toxin A: Role of interleukin 1β (1998) Infection and Immunity, 66, pp. 4910-4916Ross, B.D., The isolated perfused rat kidney (1978) Cryobiology, 8, pp. 431-440Santoro, M.C., Sousa-e-Silva, M.C., Gonçalves, R.L., Almeida-Santos, S.M., Cardoso, D.F., Laporta-Ferreira, I.L., Saiki, M., Sano-Martins, I.S., Comparision of the biological activities in venoms from three subspecies of the South American rattlesnake (Crotalus durissus terrificus, C. durissus cascavella and C. durissus collilineatus) (1999) Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol., 122, pp. 61-73Schlondorff, D.P., Roczniak, S., Satriano, J.A., Folkert, V.W., Prostaglandin synthesis by isolated rat glomeruli: Effect of angiotensin II (1980) Amer. J. Physiol., 239, pp. 486-495Vital Brasil, O., Os venenos ofidios neurotóxicos (1980) Rev. Ass. Med. Braz., 26, pp. 212-218White, J., Bites and stings from venomous animals: A global owerview (2000) Ther. Drug Monit., 22, pp. 65-6
    corecore