13,013 research outputs found

    Managing multiple morbidity in mid-life: a qualitative study of attitudes to drug use

    Get PDF
    OBJECTIVE: To examine attitudes towards drug use among middle aged respondents with high levels of chronic morbidity. DESIGN: Qualitative study with detailed interviews. SETTING: West of Scotland. PARTICIPANTS: 23 men and women aged about 50 years with four or more chronic illnesses. MAIN OUTCOME MEASURE: Participants' feelings about long term use of drugs to manage chronic multiple morbidity. RESULTS: Drugs occupied a central place in the way people managed their comorbidities. Respondents expressed an aversion to taking drugs, despite acknowledging that they depended on drugs to live as "normal" a life as possible. Respondents expressed ambivalence to their drugs in various ways. Firstly, they adopted both regular and more flexible regimens and might adhere to a regular regimen in treating one condition (such as hypertension) while adopting a flexible regimen in relation to others, in response to their experience of symptoms or varying demands of their daily life. Secondly, they expressed reluctance to take drugs, but an inability to be free of them. Thirdly, drugs both facilitated performance of social roles and served as evidence of an inability to perform such roles. CONCLUSIONS: Insight into the considerable tension experienced by people managing complex drug regimens to manage multiple chronic illness may help medical carers to support self care practices among patients and to optimise concordance in their use of prescribed drugs

    Characterizing the uncertainty in holddown post load measurements

    Get PDF
    In order to understand unexpectedly erratic load measurements in the launch-pad supports for the space shuttle, the sensitivities of the load cells in the supports were analyzed using simple probabilistic techniques. NASA engineers use the loads in the shuttle's supports to calculate critical stresses in the shuttle vehicle just before lift-off. The support loads are measured with 'load cells' which are actually structural components of the mobile launch platform which have been instrumented with strain gauges. Although these load cells adequately measure vertical loads, the horizontal load measurements have been erratic. The load measurements were simulated in this study using Monte Carlo simulation procedures. The simulation studies showed that the support loads are sensitive to small deviations in strain and calibration. In their current configuration, the load cells will not measure loads with sufficient accuracy to reliably calculate stresses in the shuttle vehicle. A simplified model of the holddown post (HDP) load measurement system was used to study the effect on load measurement accuracy for several factors, including load point deviations, gauge heights, and HDP geometry

    A versatile microfadometer for lightfastness testing and pigment identification

    Get PDF
    The design and experimental method for the use of a novel instrument for lightfastness measurements on artwork is presented. The new microfadometer design offers increased durability and portability over the previous, published design, broadening the scope of locations at which data can be acquired. This reduces the need for art handling or transportation in order to gain evidence-based risk assessments for the display of light-sensitive artworks. The instrument focuses a stabilized high powered xenon lamp to a spot 0.25 millimeters (FWHM) while simultaneously monitoring color change. This makes it possible to identify pigments and determine the lightfastness of materials effectively and non-destructively. With 2.59mW or 0.82 lumens (1.7 x107 lux for a 0.25mm focused spot) the instrument is capable of fading Blue Wool 1 to a measured 11 ΔEab value (using CIE standard illuminant D65) in 15 minutes. The temperature increase created by focused radiation was measured to be 3 to 4°C above room temperature. The system was stable within 0.12 ΔEab over 1 hour and 0.31 ΔEab over 7 hours. A safety evaluation of the technique is discussed which concludes that some caution should be employed when fading smooth, uniform areas of artworks. The instrument can also incorporate a linear variable filter. This enables the researcher to identify the active wavebands that cause certain degradation reactions and determine the degree of wavelength dependence of fading. Some preliminary results of fading experiments on Prussian blue samples from the paint box of J. M. W Turner (1755-1851) are presented

    Methods for suspensions of passive and active filaments

    Full text link
    Flexible filaments and fibres are essential components of important complex fluids that appear in many biological and industrial settings. Direct simulations of these systems that capture the motion and deformation of many immersed filaments in suspension remain a formidable computational challenge due to the complex, coupled fluid--structure interactions of all filaments, the numerical stiffness associated with filament bending, and the various constraints that must be maintained as the filaments deform. In this paper, we address these challenges by describing filament kinematics using quaternions to resolve both bending and twisting, applying implicit time-integration to alleviate numerical stiffness, and using quasi-Newton methods to obtain solutions to the resulting system of nonlinear equations. In particular, we employ geometric time integration to ensure that the quaternions remain unit as the filaments move. We also show that our framework can be used with a variety of models and methods, including matrix-free fast methods, that resolve low Reynolds number hydrodynamic interactions. We provide a series of tests and example simulations to demonstrate the performance and possible applications of our method. Finally, we provide a link to a MATLAB/Octave implementation of our framework that can be used to learn more about our approach and as a tool for filament simulation

    A Rigid-Field Hydrodynamics approach to modeling the magnetospheres of massive stars

    Full text link
    We introduce a new Rigid-Field Hydrodynamics approach to modeling the magnetospheres of massive stars in the limit of very-strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the 1-dimensional flow along each, subject to pressure, radiative, gravitational, and centrifugal forces. We solve these equations numerically for a large ensemble of field lines, to build up a 3-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star sigma Ori E. Since the flow along each field line can be solved for independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment. The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disk defined by the locus of minima of the effective (gravitational plus centrifugal) potential. But a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to ~3,000 km/s) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disk can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.Comment: 21 pages, 12 figures w/ color, accepted by MNRA

    Guidance, flight mechanics and trajectory optimization. Volume 1 - Coordinate systems and time measure

    Get PDF
    Coordinate measuring system for flight control, and trajectory optimizatio

    Supersymmetric Electrovacs In Gauged Supergravities

    Get PDF
    We show that the D=6 SU(2) gauged supergravity of van Nieuwenhuizen et al, obtained by dimensional reduction of the D=7 topologically massive gauged supergravity and previously thought not to be dimensionally reducible, can be further reduced to five and four dimensions. On reduction to D=4 one recovers the special case of the SU(2)XSU(2) gauged supergravity of Freedman and Schwarz for which one of the SU(2) coupling constants vanishes. Previously known supersymmetric electrovacs of this model then imply new ground states in 7-D. We construct a supersymmetric electrovac solution of N=2 SU(2) gauged supergravity in 7-D. We also investigate the domain wall solutions of these theories and show they preserve a half of the supersymmetry.Comment: 29 pages, TeX, no figures. Introduction and conclusion rewritten. New references added. Minor changes to all section

    Photochemical colour change for traditional watercolour pigments in low oxygen levels

    Get PDF
    An investigation for light exposure on pigments in low-oxygen environments (in the range 0–5% oxygen) was conducted using a purpose-built automated microfadometer for a large sample set including multiple samples of traditional watercolour pigments from nineteenth-century and twentieth-century sources, selected for concerns over their stability in anoxia. The pigments were prepared for usage in watercolour painting: ground and mixed in gum Arabic and applied to historically accurate gelatine glue-sized cotton and linen-based papers. Anoxia benefited many colorants and no colorant fared worse in anoxia than in air, with the exception of Prussian blue and Prussian green (which contains Prussian blue). A Prussian blue sampled from the studio materials of J.M.W. Turner (1775 − 1851) was microfaded in different environments (normal air (20.9% oxygen) 0, 1, 2, 3.5, or 5% oxygen in nitrogen) and the subsequent dark behaviour was measured. The behaviour of the sample (in normal air, anoxia, and 5% oxygen in nitrogen) proved to be consistent with the 55 separately sourced Prussian blue samples. When exposed to light in 5% oxygen in nitrogen, Prussian blue demonstrated the same light stability as in air (at approximately 21°C and 1 atmosphere). Storage in 5% oxygen is proposed for ‘anoxic’ display of paper-based artworks that might contain Prussian blue, to protect this material while reducing light-induced damage to other components of a watercolour, including organic colorants and the paper support

    Universal dissipation scaling for non-equilibrium turbulence

    Full text link
    It is experimentally shown that the non-classical high Reynolds number energy dissipation behaviour, CÏ”â‰ĄÏ”L/u3=f(ReM)/ReLC_{\epsilon} \equiv \epsilon L/u^3 = f(Re_M)/Re_L, observed during the decay of fractal square grid-generated turbulence is also manifested in decaying turbulence originating from various regular grids. For sufficiently high values of the global Reynolds numbers ReMRe_M, f(ReM)∌ReMf(Re_M)\sim Re_M.Comment: 5 pages, 6 figure
    • 

    corecore