
NASA CR-1000

GUIDANCE, FLIGHT MECHANICS AND TRAJECTORY OPTIMIZATION

Volume I - Coordinate Systems and Time Measure

By M. B. Tamburro, A. S. Abbott, and G. E. Townsend

Distribution of this report is provided in the interest of

information exchange. Responsibility for the contents

resides in the author or organization that prepared it.

Issued by Originator as Report No. SID 65-1200-1

Prepared under Contract No. NAS 8-11495 by

NORTH AMERICAN AVIATION, INC.

Downey, Calif.

for George C. Marshall Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information

Springfield, Virginia 22151 - CFSTI price $3.00

https://ntrs.nasa.gov/search.jsp?R=19680006634 2020-03-12T11:57:32+00:00Z





P_,ECED,.,_ I'AGE CLANK NOT FILMED.

FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series

intended to illustrate analytical methods used in the fields of Guidance,

Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations

and recommended procedures are given. Below is a complete list of the reports

in the series.
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NOMENCLATURE LIST

a Seml-major axis of ellipsoid Earth model, X direction (trlaxlal)

aij Elements of a matrix (direction cosines)

as, am Seml-major axis of Earth's (Moon's) orbit

A Azimuth angle

b Seml-major axis of ellipsoid Earth Model, Y direction (triaxial)

c Semi-major axis of ellipsoid Earth Model, Z direction (triaxial)

E.T. Ephemeris time

E Elevation angle

es, em Eccentricity of Earth's (Moon's) orbit

f Flattening of the Earth

G Universal gravitational constant

G.S.T. Greenwich Sidereal Time

h Altitude angle

H Perpendicular distance from a point in space to surface of

spheroid Earth model (altltude)

H.A. Hour angle

i Angle of inclination between orbital plane and some reference plane

im Inclination of Moon's equatorial plane to the Earth's equatorial

plane

io Obliquity of Moon's orbital plane with respect to the true ecliptic

it Obliquity of true ecliptic with respect to the fixed ecliptic
at some epoch

i G Inclination of ecliptic to the mean equator of date

Ixx, Iyy, Izz Moment of inertia of Earth about X, Y and Z axes

J Jacobian operator

J.D. Julian date

J.E.D. Julian ephemeris date
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i. STATEMENT OF TIE PROBLEM

All of the problems to be discussed in this and subsequent monographs

of the series require that the position and velocity of the particle being

studied be describable in a simple and definitive manner. Thus, major

attention must be placed on systems of coordinate measure. The complete

description of these systems is the objective of this monograph. This

emphasis will be exhibited in the orderly progression from the basic require-

ments of measure to the definition of coordinate frameworks utilized for

trajectory problems and those employed for the description of body oriented

axis systems. This discussion will take advantage of a NASA prepared

document (Reference l) on coordinate systems for the Apollo Project and of

its notation. However, due to the broad spectrum of problems to be encounter-

ed in this series of monographs, adaptations and additions have at times

been necessary.

Once these basic coordinate frames are described, attention will turn

to the description of the nature of the motions of these fundamental refer-

ence systems due to the motion of the moon about the earth (non-spherical

and non-homogeneous) and due to gravitational attractions on the mass anom-

alies produced by other bodies in the solar system. This analysis will take

the form of the development of a math model to be employed, the derivation

and simplification of the equations of motion and the solution of these

equations to yield the nutation and precession corrections to the basic

reference frame. This analysis, while not precise (due to the math model

employed), is singularly helpful in identifying the nature of the motion

and the primary sources of the disturbances. Equations describing the observed

motions of these coordinate systems are also included for the purpose of

completing the analysis.

The final discussion in the monograph is of time standards employed in

the study of astronomy (sidereal time, universal time and ephemeris time).

These standards, which are still employed as the basis of civil time, etc.,

(ephemeris time is a consequence of atomic clocks) are developed from the

historical as well as the physical point of view for the purpose of relating

the rotating coordinate systems described earlier to measurements of the

celestial sphere. The section includes an example which demonstrates the

relationships between these time standards and the process to be employed in
a given reduction (frequent reference is, of course, made to data available

in the American Ephemeris and Nautical Almanac).



2. STATEOFTHEART

2.1 Coordinate Systems

2.1.1 Introduction to Coordinate Systems

2.1.1.1 The Purpose of Coordinate Systems

In the process of conducting an engineering study in the realm of flight

mechanics, trajectory optimization or guidance, the first decision to be

made pertains to the selection of a coordinate system to uniquely describe

the position of the vehicle being considered and in which the equations of

motion in a Newtonian sense can be written. (Relativistic mechanics will not

be considered since the velocities generally encountered in these problems

are much less than that of light.) Thus, at this point, a simple statement

of the purpose of such systems is in order.

A coordinate system is a framework constructed to allow the specification

of an ordered triplet of real numbers associated with the position of a

point in three-dimensional space. (The idea of using velocities as coordi-

nates of a point without distinction between velocity and position coordi-

nates constitutes the phase space approach to dynamics and is discussed in

several of the monographs which follow this, the first of the series.)

2.1.I.2 Newtonian Mechanics and the Inertial Frame

If G is a frame of reference with point 0 fixed in G, and P a moving

particle, its position relative to 0 can be described as a vector quantity

= o_ • • (The velocity and acceleration of P are defined to be v.
_ _ d_

anc _ = _-_ .) On the basis of astronomical observations, Newton cdo_n-

jectured that in a basic frame (an inertial, non-rotating, non-accelerating

axis system) of reference there existed a proportionality between the force

acting on a body and its acceleration. This constant of proportionality

determines the mass of the body. The equivalent of his fundamental laws are:

Every body persists in a state of rest or in uniform motion in a

straight line except if it is compelled by force to change that state.

The time rate of change of linear momentum is equal to the force

producing it and the change occurs in the direction the force is

acting. (In vector notation this statement becomes _= _(m_) .)
d_

The mutual actions of any two bodies are always equal and opposite
in direction.

The constitution of a basic frame (in which Newton's laws are valid)

is an elusive and possibly a metaphysical concept. It is possible, however,

to establish such reference axes to a satisfactory degree of approximation

due to the almost "fixed" pattern of the stars in a given celestial field.

The extremely slow observed motions result from the large, though finite,

distances between our solar system and a typical star. These distances,



in turn, are responsible for the fact that the direction from any point in
the solar system to the star is approximately constant in inertial space
(i.e., the angle between two direction lines from any point in the system
to two such "fixed" stars remains constant). A set of inertial axes can,
therefore, be established using these direction lines to define the non-
rotating system and the masscenter of the solar system as the non-acceleratin
origin.

2.1.1.3 Coordinate SystemRequirements

Before describing the manysystems of coordinate measurementin use,
it is beneficial to first look at the four characteristics of every coordinate
system. First, all of these systems must have an origin. In a three-

dimensional space the origin is simply the location of the null set [0,0,0]

of the coordinates. Second, there must be a reference plane which contains

this point (any of an infinite set). This plane can be defined by any two

vectors lying in it or by defining one of its two poles, (i.e., the positive

or negative normal to the surface emanating from the origin). Third, an

arbitrarily selected but identifiable vector in the reference plane must be

selected as a principal direction. Finally, a technique of measuring the

coordinates of a point in the system must be established. The methods used

for coordinate measurement to be described here are the rectangular cartesian,

the spherical polar and the spheroidal.

2.1.1.4 Coordinate Measurement Techniques

2.1.i.4.1 Rectangular Cartesian Coordinate Measurement

One of the principal ideas leading to the establishment of the coordi-

nate system is the idea of identifying the complete set of real numbers

with the set of points comprising a straight line; that is, to each real

number there corresponds a single line and vice versa. This idea enables

a one-dimenslonal coordinate system to be constructed where the coordinate

[X] of a point P on the line is given by

OP is the length of line from O to P and OA is a unit length

ORIGIN

NEGATIVE REAL NUMBERS I POSITIVE REAL NUMBERS

y

0 A e



By taking three noncoplanar straight lines intersecting at an origin 0

an oblique cartesian coordinate system, associating each point in a three-

dimensional space with an ordered triplet of real numbers, can be constructed.

If the coordinate axes intersect at right angles to each other the system is
said to be a rectangular cartesian coordinate system. A feature of the rec-

tangular cartesian system is that the length of a line Joining points

P[x,¥)z] and Q [ x,_y,,_] is given by the expression

Pq=[Cx-x,]Z+(y-Y,)Z+ ( _,- _',)J

Ii
f I

o I I "'_

+ LI I

A three-dimensional space having a coordinate system with this property is

said to be a Euclidian 3 - sa_. Since the ordered triplet of numbers
IX, _p Z] satisfies all the requirements of vector spaces it will be referred
to as a vector and denoted by a bar above the quanity (i.e., 6"p). This vector

space is called a three-dimensional linear vector space since any vector in

the space can be represented as a linear combination of three noncoplanar

vectors. If these noncoplanar vectors are chosen to be of unit magnitude

having only one non-zero coordinate (i.e.,E I o_o ] , K _ i _ o] and

[,_ _ o _ t]) they are called fundamental unit vectors. In this monograph
_._._ . Thus anythe fundamental unit vectors are denoted by the symbols ^

vector [_j_] or _, can be expressed as the following line_arUcomblnation

A A

= ÷ +

A

\
\%p

N_J/



2.1.1.4.2 Spherical Polar Coordinate Measurement

The basis of spherical polar coordinate measurement is an ordered

triplet of real numbers [ R, _ , _'] • The first number is associated with

the distance between the point being measured and the origin. The other two

numbers are associated with two angles specifying the direction to the point

from the origin. When a reference line, of length R and imbedded in a rec-

tangular cartesian system, is rotated through these angles about two selected

axes the end of the line specifies the location of the point.

Consider a rectangular cartesian system determined byAthe unit vectors

_, _, _. If the reference line is chosen to be along the x axis the first

angle is determined by a rotation about the _ axis in a positive right-hand

manner for the longitude and right ascension techniques and in a negative

manner for the hour angle technique. The second angle is measured in a plane

passing through the rotated reference line and the _ axis in a direction

positive towards the z axis. This angle is referred to as the latitude,

declination, or altitude depending on the particular coordinate system it is

being measured in.
@- LATITUDE

(H.A.) - HOUR ANGIE ^ 6- DECLINATION

- ELEVATION

"_ × - LONGITUDE

- RIGHT ASCENSION

From the diagram, it is evident that the spherical coordinates of a

point are unique and may not be added in the sense of rectangular coordinates.

(That is, the sum of two vectors in spherical coordinates is not the

result obtained by adding the two ordered triplets for the respective

vectors).

2.1.1.4.3 Spheroidal Coordinate Measurement

The surface defined by a second degree equation in the rectangular

cartesian coordinates Ix, y, z] is called a quadric surface. A quadric

surface given by an equation of the form

2

a z _ G _

-/

5



is called an ellipsoid, since the intersection of any plane passing through

the origin with this surface is an ellipse. The subscript G indicates these

are coordinates of a surface point.

The figure described by this equation resembles a sphere which has

been flattened along two of its axes with the x, y, z axes being the sem_-

maJo_ mean, and minor axes of the figure. The length of these axes are

respectively, a, b, and c. If a = b, then the figure is called a spheroid.

For a = b 7 c the figure is called an oblate spheroid. Since the figure of

a spheroid can be obtained by rotating an ellipse about one of its principal

axes it is also called an ellipsoid of revolution. The figure of most

concern to geodesy is the oblate spheroid which satisfies the equation

_L. s _ 3

The parameters usually chosen to describe an oblate spheroid are the major

axis length (or equatorial radius), a and the flattening f given by

C.

L m
l

Since, for an oblate spheroid, c _ the flattening is always a positive

number.

The basis of spheroidal coordinate measurements is the ordered triplet

of real numbers [_ . _, _] . The first number_ is associated v_th the

perpendicular distance of the point being measured to the surface of the

spheroid. The second number _ , called the longitude is the same second

number used in the spherical polar measurement technique. The third number

is associated _th the angle measured in the plane of the _ axis and the

point being considered between the normal to the spheroid in the direction of



the point and the major axis. The method of spheroidal coordinate measurement
is illustrated in the following diagram.

H

OUTWARD

NORMAL TO

SPHEROID

Y

A point [OQ@_ u 6 a ] on the surface of the spheroid is given in spheroidal

ci

trigonometric functions

D

However, to express _hese coordinates in terms of the spheroidal coordinates
for any given _ and# preliminary steps must be taken. It is first necessary
to compute the rectgngular cartesian components of the unit outward normal

vector in terms of both spherical polar and spheroidal coordinates. An

outward normal vector NG is simply a vector lying in the direction of the

maximum rate of change 8f the scalar function determining the surface. N_is

obtained by operating on the function using the gradient operator denoted°by
the symbol _ . That is

7



The unit outward normal vector NGin terms of spherical coordinates is

c_ __ +
_ c_4 J

In terms of spheroidal coordinates the unit normal vector is

Now equating the components of these two expressions for the unit normal
vector results in the relation

To establish the value of _- _as a function of the angle _@Dthe

procedure is as follows:



where

since

_ [c__.___/c-_-_-,_-__-_]._,._o

then

or

ZL_Q --

where

=



Hence

There fo re

or expanding this expression in series

An expression for the radial distance E G to the spheroid can be derived as

follows :

' o_L -- _- ., C._ --j

m ]

lO



The average (or mean sea-level) figure of the earth is best represented

as an oblate spheroid with the minor axis being the axis of revolution (polar

axis). This model is not exact, however, it is adequate for most trajectory

studies. For this reason the best values of the equatorial radius a and

the flattening f are desired. These data along with the polar radii are

presented in the following table.

Table. i. Equatorial Radius a, and Flattening f

Equatorial

_diUS, a

1

Y

Polar radius,

c

Confidence

Level

Bs.ke r

6378.15o

+ 0.050

298.30

+ 0.05

Kaula

6378.163
+ 0.021

298.24
+ 0.04

Statistical

Estimate

from Available Data

6378.210

+ 0.045

298.27

+ 0.03

6356.768 6356.777 6356.826

+ 0.050 + 0.021 + 0.045

? _ 95%

In addition, Kaula's values of a and f have been utilized to construct

tables of _GD - _'GC and _/a (Tables 2 and 3)

2.1.1.5 Classification of Coordinate Systems

For the purposes of this monograph, all coordinate systems (regardless

of their method of coordinate measurement) will be classified as being either

observational or dynamical in nature. Observational coordinate systems

will be considered to be fixed with respect to either an observer or a

central body and thus include most of the astronomical frames. (A central

body is a body having a very large mass as compared to a body moving under

its sole influence.) On the other hand the dynamical coordinate system

will be considered to be fixed with respect to the orbital plane of the

vehicle or some identifiable feature of the vehicle's structure. A further

classification of coordinate systems will be made based on whether the system

is rotating or fixed with respect to the "fixed" stars.

In order to accurately describe the coordinates of a number of bodies

in the many coordinate systems described in this monograph a superscript and

subscript is given to each coordinate. The superscript gives the number of

the body belngmeasured. For the purposes of describing an arbitrary body

number, no superscript is given. The subscript indicates the coordinate

system in which the body is being measured. These superscripts and subscripts

are easily read by consulting the given listing.

11
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Superscripts Ist Subscript 2nd Subscript

L Launch site G Geo A astronomical

C centric

T Observer (topos) 0 orbital D detic

E equatorial

V Vehicle S seleno ecliptic

G graphic

M Moon T topo H horizontal

L lunar equatorial

S Sun V vehicle P principal

S stable

Using the above notation, the coordinate VZs& for instance is

interpreted to be the x coordinate of the vehicle as measured in the

selenographlc coordinate system. In general, the first subscript can be

identified with the center of origin of coordinates and the second subscript

associated with the reference plane. Although all combinations of the two

are not used, this notation suggests an abundance of possible coordinate

systems. Some of these systems will be discussed and illustrated later

(sections 1.1.2.2 and 1.1.2.3).

2.1.1.6 Selection Basis

The bases upon which a coordinate system is selected are the require-

ments of the particular problem under investigation, and interface consider-

ations. For problems involving the contributions of many technologies it is

generally wise to adopt a set of standard coordinate systems.

2.1.2 Observational Coordinate Systems

2.1.2.1 The Celestial Sphere

The first class of coordinate systems to be considered is that of the

observer or the observer's central body. (These are the systems commonly

associated with astronomical and radar observations.) In each of these

systems, the observer and the observed body are in motion. Further, the

motion can be described only with the aid of an "inertial" coordinate system

in which Newton's equations can be evaluated. Thus, since an observer has

no concept of direction except in relation to other bodies, objects, etc.;

and since the less the motion of the reference direction, the more accurately

the observer can correlate data acquired at different times, the concept of

the celestial sphere has developed. The celestial sphere is an imaginary

surface of infinite radius on which the positions of the stars are projected

(see sketch).
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Since the celestial sphere is considered to have an infinite radius, every

point in the solar system can be regarded as being a center and all lines

(or planes) parallel to each other will intersect the sphere at common points

(or great circles). This fact not only allows positions to be quoted rela-
tive to the "fixed" stars but it also drastically simplifies the problem of

reducing data acquired from several observers, each of which was employing a

reference system of finite proportions.

The difference in position of celestial bodies projected on the

celestial sphere due to a change of origin is known as parallax. Since the
dimensions of the Earth's orbit are known, this effect can be measured by

comparing the apparent positions of a celestial body at different times

during the Earth's transit about the Sun. For origins located within the

solar system parallax is negligible for all but the nearest stars. The

celestial sphere therefore provides a conYenient framework for fixing the

relative positions of the heavenly bodies.

2.1.2.2 Origin of Coordinates

The first characteristic of a coordinate system is an origin of

coordinates; that is, the point at which the null, or zero set is located.

The origins of observational coordinate systems and their designations are:

l) The center of the Earth - geocentric, (from the Greek _eo-earth
and Gr. kentron - center)

2) The center of the Moon - selenocentric (Gr. selene-moon)

3) The center of the Sun - heliocentric (Gr. helios - sun)

_) The center of Mass - barycentrie,

(Gr. barys-heavy)

5) The observer - topocentric (Gr. topos-place)

2.1.2.3 Reference Planes

Associated with every reference plane are its poles, or the points at

which a normal to the reference plane pierces the celestial sphere. The

position of the poles on the celestial sphere does not change with a change

in origin of coordinates since the celestial sphere was assumed to have an
infinite radius. There are four reference planes, known as fundamental

planes, that are the basis of most astronomical measurements. They are:

i) The plane of the Earth's equator

This is the plane perpendicular to the instantaneous axis of rotation

of the Earth. The great circle in which it intersects the celectial sphere

is called the Earth's celestial equator (or celestial equator). The poles

of the Earth's equator are known as celestial poles.

15



2) The plane of the ecliptic

The plane in which the Earth moves around the Sun (withstanding

perpendicular disturbances caused by the sun'S oblateness, the Moon and
the planets) is designated as the ecliplic. Its great circle on the celestial

sphere is simply called the ecliptic.

3) T_he plane of the geodetic horizoi_

This is the plane tangent te the surface of the oblate

spheroid Earth model, at the observer. If the actual Earth coincided with

this model, it would also be the plane normal to the direction of gravity
at the observer.

4) The plane of the astronomical horizon

This is the plane perpendicular to the direction of the local gra-
vity vector or the direction of a plumb line at the observer. Due to

certain anomalies, such as surface terrain effects, it does not exactly
coincide with the plane of the geodetic horizon. The great circle in which

the astronomical horizon intersects the celestial sphere is called the

celestial horizon. The pole of the plane of the horizon in the upward

direction is known as the zenith, and in the downward direction, the nadir.

In addition, the following non-fundamental reference planes will
also be considered:

5) The plane of the Moon's equator

This is the plane perpendicular to the axis of rotation of the Moon.

The great circle in which it intersects the celestial sphere is called the

_on's celestial equator.

6) The plane of the Earth-Moon systems

This is the plane described by a line passing through the center of

the Earth and the center of the Moon, as the Moon revolves about the earth.

7) The plane of the Galaxy

This is the plane perpendicular to the axis of rotation of the

Milky Way Galaxy. The great circles intersecting the celestial sphere are

known as galactic circles. Its poles are called galactic poles.

2.1.2.4 Principal Directions

Having established an origin and reference plane for an axis system,

it is necessary to prescribe a direction to complete a unique description

of an axis system. If the chosen direction lies in the reference plane, it

is called a principal direction. All principal directions are determined by
the line of intersection between a great circle on the celestial sphere and

the reference plane. If the great circle passes through the poles of the

reference plane, it is called a meridian of the reference plane.
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PRIME

RIDIAN

REFERENCEPLANE

PCINT
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k_____/ DIRECTION

If the great circle is the celestial circle of another reference plane, the
llne of intersection, (determining the principal direction) is called the

llne of nodes of the two reference planes. Most often, one of these ref-

erence planes is an orbital plane. If this is the case the node passed as

the orbiting body goes toward the northern hemisphere of the reference

plane is called the ascending node and the other the decending node.

DESCENDING __

NODE _

11/ I " _ ORBITAL PLANE

REFERENCE PLANE

LINEoF-" /

NODES __ J
ASCENDING"

NODE

The three most common principal directions defined in terms of a

meridian are those determined by the Greenwich or prime meridian, the

lunar prime meridian and the local meridian. For a geocentric system, a

principal direction is determined by the plane of the Earth's equator and the

meridian passing through the Royal Observatory at Greenwich, England, positive
in the direction nearest to Greenwich.
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Por a selenocentric system a principal direction is determined by the

plane of the Moon's equator and the lunar meridian passing through the mean

center point (MCP) of the Moon, positive in the direction of the mean center
point.

The local meridian is the great circle normal to the fundamental plane

passing through the position of the observer. It fixes a principal direction
which is in the direction nearest to the observer.

The most useful principal direction in astronomical work is that

established by the intersection of two reference planes, that of the Earth's

equator and the ecliptic. The principal direction is taken in the direction

of the ascending node, that is, the point on the celestial sphere where the

apparent orbit of the sun crosses the celestial equator going north. Since
this occurs during the spring season of the Northern Hemisphere at the time

when sunlight and darkness intervals are equal it is called the vernal

equinox. (from the Latin vernalis - spring, _ - equal, and no___x-
night). The point on the celestial sphere where the plane of the ecliptia
is nearest to the north celestial pole is called the summer solstice and

the point nearest the south celestial pole the winter solstice.

/
JUNE 21

VERNAL

_QUINOX

MAR. 21

DEC. 22

WINTER SOLSTICE

SUMMER SOLSTICE
AUTUMINALEQUINOX

ECLIPTIC

CELESTIAL EOUATOR

Unfortunately, from the standpoint of computing the positions, or ephermerides
of the celestial bodies with the passage of time, both the poles of the

ecliptic and the celestial poles are continuously in motion. Hence, the

equinox is continuously moving on the celestial sphere. This motion will be
discussed in detail in section 2.2 of this monograph; however, the general

nature of the motion will be discussed in subsequent paragraphs.
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The motion of the pole of the ecliptic is a result of planetary
attractions upon the Earth as a whole and is called planetary precession.

It consists of a slow rotation of the ecliptic about a slowly moving diameter.

The effect of this is to decrease the angle between the pole of the ecliptic

and the celestial pole (the obliquity of the ecliptic) by about 47" a century

and displace the equinox about 12" per century. The motion of the celestial

pole is due primarily to the attraction of the Moon and Sun on the equatorial

bulge of the Earth. The theory of this motion is given in Section 1.1.3

(The Effects of Precession and Nutation). However, since the discussion of

the coordinate frames relates so closely with this material, some of
the more salient facts will be summarized for the purpose of describing the

motion of the principal direction determined by the vernal equinox. The

first component of this motion is called Luni-Solar precession and consists

of the mean or continuous motion of the celestial pole about the ecliptic pole.
As the mean celestial pole moves, or precesses, about the pole of the

ecliptic its direction line describes a conical surface (with semi-vertex

angle of approximately 23.5 °) about the pole of the ecliptic. The period of

revolution is about 25,800 years.

Superimposed on this motion is a small amplitude (about 9") irregular

motion called nutation which carries the true celestial pole about the mean

pole in a period of 18.6 years. The position of the vernal equinox, dis-

regarding the effects of nutation, is called the mean equinox ( _ ). The

true equinox includes all effects due to precession and nutation. Since
the mean equinox of date is not a fixed inertial direction, a principal

direction corresponding to the mean equinox of 1950.0 has been adopted

as an inertial principal direction. The notation 1950.O is used to describe

the beginning of the Besselian year of 1950 which actually occurs 22.15

hrs. E.T., 31 December 19_9 (J.D. 2,&33, 282 . _23).

2.1.2.5 Rotating Observational Systems

This section is concerned with the definition of coordinate systems

in which observations can be readily made from the Earth or Moon. The intent

is to present an orderly discussion and graphic portrayal of these systems

and to extend the basic notation and format advantages realized in Reference

1. To this end the following subsections have been prepared.
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2.1.2.5.1 Gepgraphic Coordinate Systems (GG) (Geocentric (GC) and

_eeodetic (GD) Latitudes).

/
b/_----No_LTo

PRIME MERIDIAN - _ SPHEROID

Rotating, earth referenced, observational

Center of the earth (geocentrics)

Reference Plane Earth's equator

Principal Direction Intersection of the prime meridian with the

earth's equator.

Rectangular Cartesian Coordinates

_@@axis is in the principal directions

_@_axis is normal to the x_ _G_ plane

in the right hand sense

_@@axis lies in the direct_cn of the

celestial pole
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Spherical Polar Coordinates

_6 radial distance from origin to the point
being measured

- longitude measured positive eastward from

th_ "rime meridian to the meridian contain-

in& ohe point of interest (local meridian)

_ geocentric declination (angle between the
radius vector to the measured point and the

earth's equatorial plane), measured posi-

tive north of the equatorial plane

_' - _eocentric latitude (angle between the

earth's equatorial plane and the radius

vector to the point of intersection of the

earth model and the normal to the spherord

to the point being measured)

measured positive north of the equatorial

plane

Spheroidal Coordinates

_@- perpendicular distance of the point being
measured to the surface of the earth

spheroid model

- same as longitude measured in spherical
coordinates

_@_- geodetic latitude (angle between the
normal to earth spheroid model passing

through the point of interest and the

e_.rth's equatorial plane
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2.1.2.5.2 Geographic Coordinate System (Astronomical Latitude (GA))

PI/RB LINE

DIRECTION

NORMAL TO

EARTH MODEL

EQUATOR

This coordinate system is identical to the geographic system with the

exception that the latitude of a reference point is now given by the angle

between the local gravity vector (or plumb line) and the plane of the

equator. If the earth were exactly spheroidal in shape and the mass dis-

tributed in uniform concentric layers the direction of the gravity vector

would be normal to the spheroid. However, due to deviations resulting

from surface terrain effects and other causes the astronomical latitude@QA

differs from the geodetic latitude _obY a small quantity _& called
station error, where
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2.1.2.5.3 Radar AZ-EL or T_pmdetic Axes (TD).

TD

b"

NORMAL TO

EARTH MODEL
I%

OBSERVER

OBLATE SPHEROID

EARTH MODEL

PRIME

MERIDIAN

EQUATOR

LOCAL MERIDIAN

Type

Orion

Rotating, earth-referenced, observational

Observer (topocentric)

Reference Plane Tangent plane to the spheroid earth model
at the observer

Principal Direction Local south direction on the tangent plane
to the earth model

Rectangular Cartesian Coordinates

_(Da_'s is in the principal direction
a_ls is normal to the_Dny.oaxes in the

ght hand sense '-
axis is in the direction of the normal

to the earth spheroid model
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Spherical Polar Coordinates

r - radial distance from the observer to the point

being measured

_-azimuth measured from the local northangle

direction on the tangent plane to the projec-

tion of the point being measured on the

tangent plane, positive to the east

- elevation angle measured between the tangent
plane to the earth model and the line from the

observer to the point, positive towards the
outward normal to the earth.
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2.1.2.5.4

PRIME

Topocentric Equatorial (TE) or Radar (H.A.-Dec.)

_Te

r_E _T[

HTE r_

EQUATOR

LOCAL

MERIDIAN

T_2s_q

Reference Plane

Principal Direction

Rotating, earth-referenced, observational

Observer (Topocentric)

Earth's equatorial plane

Intersection of the local meridian through

the observer with the earth's equatorial

plane in a outward direction from the
observer

25



_en+._n_1]_r C_rtesian goorc[inates

_.axis is in the principal direction

_,axis is normal to the O( ,_ axes in
right hand sense

_axis is in the direction of the north

celestial pole

Spherical Polar Coordinates

radial distance from the observer to the

point being measured

topocentric hour angle measured from the

_E axis, in a clockwise manner when

looking from the positive _taxis to the
projection of the point on -the observer's

equatorial plane

topocentric equatorial declination angle

measured between the observer's equatorial

plane and the line from the observer to

the point being measured
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2.1.2.5.5 Topocentric Horizontial (TH) or Local Astronomical Axes.

NORMAL TO

MODEL

A LOCAL MERIDIAN

DIRECTION OF

LOCAL GRAVITY VECTOR

(ZmaTH)

OBSERVER

A

S

EQUATOR

Origin

Reference Plane

Principal Direction

Rotating, earth-referenced, observational

Observer, (topocentric)

Plane of the astronomical horizon (the plane

whose normal is in the direction of the local

gravity vector)

Local south direction on the plane of the

horizon determined by the intersection of

the horizon and the plane p_ssing through

the earth's axis of rotation containing the

observer
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Rectangular Cartesian Coordinates

_ axis is in the principal directio_

axis is normal to the--_,
in the right hand sense

_ axis is in the outward direction of the
local _ravity vector (plumb line
direction)

Spherical Polar Coordinates (not shown)

r_- radial distance from the observer to the
po±n_ being measured

ATe- astronomical azimuth measured from the local
North direction in the plane of the

astrono_Zcal horizon to the projection of the

point on this plane

_T_ - astronomical altitude measured from the

plane of the astronomical horizon to the

line from the origin to the point being

measured, positive toward the zenith
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2.1.2.5.6 Selenographic Coordinate System_.

LUNAR PRIME

MERIDIAN

MARE
SERENITATIS

MARE

CRISIUM

LUNAR

EQUA TOR

LUNAR LOCAL

MERIDIAN

_e

Origin

Reference Plane

Principal Directions

Rotating, moon referenced, observational

Center of the moon (Selenocentric)

Lunar equatorial plane

Mean center point of the Apparent Disc

Rectangular Cartesian Coordinates

9_axis lies in the principal direction

_axis is normal to the_.,_plane in
in the right hand sense
axis lies in the direction of the lunar

S@celestial pole

Spherical Polar Coordinates

Zs@- radial distance from the center of the
moon to the point being measured

selenographic longitude measured positive
from the lunar prime meridian (passing

through the MCP) to the point being

measured in the direction of Mare Crisium.

_ selenographic latitude
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2.1.2.5.7 Earth-Moon Barycentric Axes (BC)

EARTH

EQUATOR

I

k__J ISNAR MOON

EQUATOR PLANE

Origin

Rotating, lunar trajectory applications

Center of mass of the Earth-Moon system

(barycentric)

Reference Plane

Principal Directions

Earth-Moon plane

Direction of the llne from the center of the

Earth to the center of the Moon (Earth-Moon line)

Rectangular Cartesian Coordinates

XBC axis is in the principal direction

YBC axis is normal to the XBC, ZBC axes in the

right-hand sense

ZBC axis is in the direction normal to the

Earth-Moon plane positive towards the north

celestial pole
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2.1.2.6 Quasi-Inertial and Inertial Observational Systems

The coordinate frames presented on the previous pages are all

tied in some fashion to the Earth's crust (or that of the Moon) and

all move with it. However, for studies of motion, it Is generally

desirable from the standpoint of the complexity of the solution to

write the differential equations describing the trajectory in a frame for

which the coriolls accelerations are negligibly small. The subsections

which follow present some candidate systems defined with reference to

equatorial planes, etc. of the epoch of date. These frames are moving

very slowly (thus the terminology quasl-lnertial) and in a predictable

fashion (section 2.2). Therefore, should the rotational accelera-

tions involved still be too large to be neglected for a particular

application, an arbitrary epoch in the past (generally 1950.0) can be

selected for the definition of the basic reference frame and corrections

for nutation and precession can be made when communicating between

the frame of the reference epoch and that of date.
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2.1.2.6.1 Earth Centered Quasi Inertial or Geoequatorial__.

MEAN VERNAL

EQUINOX OF DATE
MEAN EQUATOR

OF DATE

Type Quasi, inertial, observational

Center of the earth (geocentric)

Reference Plane Mean earth equatorial plane of date

Principal Direction Mean vernal equinox of date

Rectangular Cartesian Coordinates

OQ@_ axes is in the principal direction

_aaxes is normal to the _,_ plane in the
right hand sense

_ axes is in the direction of the mean north
celestial pole of date

Spherical Polar Coordinates

r@_- radial distance from the center of the
earth to the point being measured

c_&_- right ascension measured from the_@_ axis

to the projection of the line from the origin to the
point on the mean equatorial plane of date,
positive in a counterclockwise manner when

viewed from the positive_axis.
%g --

_@z- declination, the angle between the mean
equatorial plane of date and the line from

the center of the earth to the point being
measured.
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2.1.2.6.2 Geoecliptic (G@_.

CENTER OF

THE EARTH

ECLIPTIC

MEAN EQUATOR

OF DATE

Quasi - Inertial,observational

Center of the earth (geocentric)

Reference Plane Ecliptic

Principal Direction Mean vernal equinox of date

Rectangular Cartesian Coordinates

_&6axis is in the principal direction

O_axis is normal to the _-,u_'_t_/_'_ plane in the
right hand sense

%&&axis is in the direction of the north pole
of the ecliptic

Spherical Polar Coordinates

"_@ - radial distance from the center of the earth
to the point being measured

ecliptic longitude measured from the

axis to the projection of the line from the

origin to the point being measured on the

plane of the ecliptic

ecliptic declination measured between the

plane of the ecliptic and the line from the

origin to the point
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2.1.2.6.3 Seleno.centrlc E_uatorlal (SE)

MOON'S EQUATORIAL PLANE

TRUE VERNAL

EQUINOX OF DATE _TH'S EQUATORIAL PLANE

Typ___e_el

Origin|

Reference Plane:
,| i ii i i ii

Principal Direction:
ii i i, ,

Quasi-inertial, observational

Center of the Moon (selenocentric)

Earth's true equatorial plane of date

True vernal equinox of date

Rectangular Cartesian, Coordinates:,,, ,

_sm axis is in the principal direction

_$_ axis is normal to the _ , _$_ axes in the
right-hand sense $_

_,_ axis is in the direction of the true north

celestAal pole of date
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2.1.2.6.4 Selenocentric 5unar Z@uaCorial (SE)

\ MOON'S EQUATORIAL
PLANE

EARTH' S EQUATORIAL

PLANE

Origin:

Reference Plane s

Principal Directions

Quasi-inertial, observational

Center of the Moon (selenocentric)

Moon's equatorial plane

Intersection of the Earth equatorial meridian

passing through the true vernal equinox of date

and the Moon's equatorial plane

Rectangular Cartesian Coordinatess

_$_ axis is in the principal direction

_i_ axis is normal to the _$_ _ axes in the
right-hand sense

_sL axis is in the direction of the Moon's
axis of rotation
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2.1.2.6.5 Earth-Centered Inertial of 1950.0 (GE 1950.0)

(diagram same as geoequatorlal - except

equatorial plane and mean vernal equinox

are of epoch 1950.0)

Type:

Origin:

Inertial, observational

Center of the Earth (geocentric)

Reference Plane : Mean Earth equatorial plane of epoch 1950.0

Principal Direction: Mean vernal equinox of epoch 1950.0

Rectangular Cartesian Coordinates:

XGE50 axis is in the principal direction

YGE50 axis is normal to the XGE50 ZGE50

plane in the right-hand sense

ZGE50 axis is in the direction of the north

celestial of epoch 1950.0

2.1.2.6.6 Galactic and Heliocentric Coordinate Systems

The use of galactic coordinate systems is at present limited to

radio astronomy studies, When used in conjunction with this branch

of physics 0 the Earth is chosen as the origin of coordinates, the plane

of the Milky Way galaxy is the reference plane, and either the direc-

tion toward the center of the galaxy or the intersection of the plane

of the galaxy with the celestial equator is chosen as the principal

direction. If the former principal direction is used, the axis

normal to this direction and the direction of the galactic pole is in

the direction of Ealactic rotation.

The reference plane for heliocentric or Sun-centered coordinate

systems is the plane normal to the Sun's axis of rotation. Except for

a slight angle of inclination, this plane coincides with the plane of

the ecliptic, Any number of principal directions can be chosen to

determine the heliocentric axes,
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2.1.3 Dynamical Coordinate Systems

2.1.5.1 Orbital Plane Systems

It will be shown in the monograph cnTheory of Motion - Two Body

that in a dynamical system consisting of a vehicle w_th negligible mass

and a spherical central body with sy_metrlc mass distribution that the

vehicle moves in a plane (known as the orbital plane) which passes

through the center of the central attracting body. Rectangular car-

tesian coordinate systems with two arbitrarily defined axes imbedded

in this plane are, thus t frequently useful in analyzing this motion;

althoush in the true case t disturbances such as those due to an oblate

central body produce a motion out of this plane. However, for small

disturbances it is still convenient to use coordinates based on this

plane for many orbit computations. Generally, these orbital plane

systems are right handed and are oriented such that their Z axis is

perpendicular to the orbital plane (i.e. t alon E the angular momentum).

The X axis (the principal direction) is selected to be a readily

definable vector in the plane of motion (toward perlapse t toward

(_t°_ , toward the node, etc.).

The orientation of the orbital plane is given with respect to some

reference plane associated with the central body and containing an

arbitrarily selected principal direction (with the Earth as a central

body - the equatorial plane is commonly taken as the reference plane t

and the vernal equinox of date (cY'_) t the principal direction). This

orientation is given in terms of the angle of inclination ( & ) between

the orbital and reference planes with_e--r-ange o'_ g_,_" and

the longitude of the ascending node measured from the principal
direction6

In those cases in which the desired coordinate frame is selected

in such a fashion that the principal direction locates the perifocus

of the orbit, a third angle _ t called the argument of perigee and

measured in the orbital plane from the ascendin_ node to the perifocus

must be specified. The angle_r (referred to as the true anomaiy')"

measured in the orbital plane from the direction of the perifocus now
locates the vehicle.

_o_ .] normal to reference plane

_ VEHICI._.

NODE

3'/



A summary of the principal directions of the orbital plane

coordinate systems and their coordinate measurement notation is given

below:

Principal Direction

(X-axis)

Rectangular Cartesian

Coordinates

Spherical

Coordinates

Projection of the

vernal equinox of
date on the orbital

plane, _C °

Ascending node

Perifocus

Vehicle (rotating

frame)

Vehicle (inertial

frame of to )

In each of these orbital plane coordinate systems, the angle _o is

measured normal to the orbital plane (that is, in the plane containing

the Zo axis and the vehicle) and is positive toward the Zo axis. In

the absence of disturbing forces _@= 0. All orbital plane systems have

their origin at the central spherical body and their Z axis aligned

normal to the orbital plane.
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Vehicle Princ i_a! Body Axes (VP)2.1,3.2

OF GRAVITY

GE

TRUE EQUINOX_ EARTH'

OF DATE

CENTER OF

THE EARTH

S EQUATORIAL

PLANE

Typ_._._e: Rotating, vehicle referenced

Origin: Vehicle center of mass

Reference Plane_
, i

_incipal Directionz

Plane normal to the longitudinal axis of symmetry

One of the principal axes of inertia in the

reference plane

Rectangular Cartesian Coordinatess
i

axis is the vehicle longitudinal axis of

symmetry

v_ axis is a principal axis of inertia

_ve axis is a principal axis of inertia normal
to the_ , _ve plane
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Vehicle Principal Axes (VP) Orientation Wlth Relation to

the Geoequatorlal Coordinate System (GE)

The _vp, u v , _vp vehicle principal axes directionsp
are derived from the geo-equatorlal axes by successive

rotations about the _@_ axis, the intermediate

_vp axis, and the final _vp axis by the angles _vp,

evp, and @v_, respectively. For a vehicle aligned

normal to the Earth spheroidal model at launch, the

orientation angles _v_nd e vp correspond to the right

ascension of the launch site ( _ C_@,) and the south

geodetic latitude of the launch site.
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2.1.3.3 Vehicle Stable Platform Axes (VS)

Type Non-rotating, translates with vehicle, guidance applica-
tions

Origin Intersection of the primary axes of the accelerometers
in the vehicle guidance package

Rectangular Cartesian Axes
x_ axis is parallel to the Earth spheroid outward normal

at the launch slte at th_ guidance reference release tlme

_vs axis Is normal to the Xvs, _vs plane in the right-
hand sense

_vs axis is parallel to the aiming azimuth at the guidance

reference time positive downrange

Vehicle Principal Axes (VP) Orientations Wlth

Relation to the Vehicle Stable Axes (VS)

The Xvp, _vp , _vp vehicle principal axes directions are
derived from the vehicle stable axes by successive

rotations about the Xvs axis, the intermediate _vP axis

and the final _vp axis by the angles _v, _, and _v

Vehicle Stable Axes at Launch Point (TS)

The vehicle stable axes at the launch point is a non-

rotating axls system with the origin fixed to and

moving wlth the launch point as the Earth rotates. Its

axes are oriented In the same direction as the vehicle

stable axes.
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2.1.4 Coordinate Transformations

2.1.4.1 Introduction to Transformations

A transformation is a group of simultaneous equations

relating a set of independent variables to a set of dependent variables.

If [_ 0Cr0u_ ] is the set of independent variables and [_ ,_. , _]

the set of dependent variables, then the equations

where f, g, and h are given functions, are said to determine the trans-
formation T or transformations of coordinates. This transformation

which can also be written as:

is to be regarded as a law of correspondence whereby to each set of

numbers [_ 0U- ,_] there corresponds a set of numbers [ _ ,_ ,_ ].

To be considered as a transformation, the number of independent vari-

ables does not, in general, have to equal the number of dependent

variables_ however, in transformations resulting from translations or

rotations of three dimensional coordinate systems, the number of vari-

ables in each set are the same| namely, three. The equations relatin E

spherical polar and rectangular cartesian coordinates are also of this

type. It will be assumed that t except at certain singular points, the

functions f, g, and h are continuous, differentiable functions; there-

fore 0 there exists an inverse transformation T-I of the form

if the functions f, g, and h have continuous partial derivatives and if

the Jacobian determinant
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does not vanish at any point where the inverse transformation is

defined. It is furthermore assumed that the transformation and its

inverse are single-valued{ that is 0 there exists a one-to-one cor-

respondence between all sets of the real-valued triplets [ _ ,u-,w]

and[_ ,_._].

2.1.4.2 Transformation Between Spherical Polar and RectanEular Cartesian

Coordinates

A common transformation of coordinates is the one between spherical

polar [_ ,A 0 _ ] and rectangular cartesian coordinates [_ , _ , _ ].

This Eroup of equations can be written by means of the triEonome%rlc

functions as

X = R cos ¢ cos A

= R cos ¢ sin A

%=Rsin

And t the inverse transformation can be written in terms of the inverse

trisonometric functions as

_- ?o" _- A _- ÷clo ° //" X >0-' _ _o"_ ,_" zTo° ,f _.o
(es - -$/"/ (I..

-t _ 900, _, ,. +_0 o

Since the Jacobian J of the transformations is found to be

J = _cos_

the inverse transformation exists for R # 0 and _ # g0 °.
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2.1.4.5 Linear Transformations

A transformation of coordinates T is said to be linear if:

where a and b are constants. The general form of the equations

determining a linear transformation between [ K ) _ ) _ ] and

t

_= a.,.o ,o.,_,_,, a. ,.,. _ _"iY

where the ats are constants,

written in matrix notation as:

m ( I .

_' Ou,o

/

: 6Lzo +

This system of linear equations can be

6t,, 6tl_ _'_3" fT."

or in abbreviated matrix notation as

/

where

_,- 3'o

y.
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, !
If the [ X t _ 0 _r ] are rectangular cartesian coordinates, this
transformation can be visualized geometrically as two transformations:

a transformation due to a translation of the origin of the axis system,

and a transformation due to a rotation of the axis system.

The elements _i_ of the matrix array [ A ] are called the direction
cosines of the linear-transformatlon. This follows from the fact that

the unit vectors in each system are orthogonal to each other. These

direction cosines are formed by taking all possible dot products between

the unit vectors in each system, that is:

Since the Jacobian of the total transformation is simply the determinant

of the [ A ] matrix, the inverse transformation

-i

= [A-I (x'-Xo)

exists if

[A]4o
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2.1.4.4 Properties of the Rotation Matrix [ A ]

Since the matrix [ A ] can be thought of as representing a trans-

formation by rotation of a rectangular cartesian axis system, it is

called the rotation matrix. By taking the dot product of two unit

vectors in the transformed axes i the orthogonality conditions of the

direction cosines can be derived. They arel

,At ¢ "7.. -L '2.

A " X = _,, +_,a +_'s--I

A I A / __ "I. nu

At AI "a. '_ "IU.

All linear transformations having these properties are said to be

orthogonal. If successive orthogonal transformations [ A ], [ B ] are

applied to a system I the resulting transformation [ C ] is also orth-

ogonal. Symbolically 0 this product is represented as:

[C ] = [ A ] [ B ]

where [ A ] [ B ] _ [ B ] [ A ]. For orthogonal transformations, the

transposed matrix [ A ]T obtalned by interchangin_ the rows and colums

of [ A ] is identical to the inverse matrix [ A ]-' . This fact can be

proven by comparing the transpose matrix with the transformation matrix

formed by reversing the order and sense of the rotations involved.

The rotation matrix defining a transformation by positive rotation

about the X axis has the form

"I 0 o
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Similarly, for positive rotations about the x and z axes by the angles

@ and_ , respectively, there corresponds the rotation matrices [ "r_,e ]

and [ T_l V" ], where z

-cos _ 0 - _,,,,

o I o

o o I

Using this notation, successive rotations about the z, y and x axes

through the angles _ , 0 and _ respectively yields the transformation.

and _ny vector is transformed as
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2.1.4.9 Transformation by Translation

The transformations between any two coordinate systems having different

origins is simplified by considering an intermediate system orientated

such that its axes are aligned with the axes of one of the systems and its

origin located at the other. The transformation between this intermediate

system and the system located at the other origin then consists of a

simple translation and is written in the form

=Xp Xop

In this section intermediate axes systems will be employed to describe the

transformations between the geocentric, topecentrlc and vehicle-centered

systems.

2.1.4.9.1 Transformation Between Geocentric and Topocentric Systems

These transformations are accomplished by first considering an

intermediate system known as the local geocentric equatorial axes (GE')

with origin at the center of the earth and axes aligned with the topocentric

equatorial axes (TE). The transformation between a vector measured in

the topocentrlc equatorial axes and one measured in the local geocentric

equatorial axes is given by
T

where

Eo osoI
G sin _ GCJ

By means of this transformation and Tables 2.1.4.5, 6, and lO all

geocentric and topocentrlc system relationships can be easily written.

2.1.4.9.2 Transformation Between Topocentric and Vehicle-Centered Systems

The relationship between topocentrlc and vehlcle-centered systems is

easily written once the transformation between the vehicle stable axes at

the launch point (VS') and the vehicle stable axes (VS) is established by

V

XTS = IVS +_TS

where

T

YX.TS

v Ts

Vz s
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Tables 2.1.4.6 and i0 can then be used to write the transformation
between any topocentrlc and vehicle-centered system.

2.1.4.9.3 Transformation BetweenVehlcle-Centered Systems and
Geocentric Systems

These transformations are established b_ considering the intermediate
axis system knownas the Vehicle-Centered Equatorial System (VE) with
origin at the vehicle center of massand axes aligned with the Geoequatorlal
(GE) system. The transformation between these coordinate systems is
given by

V
_GE = XVE + _GE

where

V_GE
v v

VRGE c°s _GE cos C_GE

VRGE cos VSG E sin VGE

sin V_G E

All other transformations between geocentric and vehicle-centered

systems can be written by consulting the tables 2.1._.5, 8, and lO.
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2.2 THE EFFECTS OF PRECESSION AND NUTATION

2.2.1 Description of the Various Types of Precession and Nutation

Over 2000 years ago it was discovered that the v_rnal equinox

moved from east to west by 50". 2A53 every year. This motion is called pre-

cession and is caused by the gravitational attraction of other celestial

bodies acting on the equatorial bulge of the earth. If the earth were

perfectly spherical and radially homogeneous, it would not experience any

deviation from its mean equatorial pole. However, since the earth has an

equatorial bulge, it experiences torques from the gravitational attraction

of the sun and the moon. Due to the fact that the lunar orbital plane is

approximately 5 ° oblique to the mean ecliptic, both the lunar and solar

torques tend to align the equator with the ecliptic. The earth responds to

this torque much like a spinning top responds to a torque. It precesses

about the mean ecliptic pole. This precession is called luni-solar precession.

Since the moon is so much closer to the earth than the sun, its contribution

to luni-solar precession is approximately twice as much as that from the sun.

The equatorial pole has an obliquity of about 23.5 ° so at the rate of pre-

cession mentioned earlier, the equatorial pole would very nearly trace a

right circular cone every 25,800 years.

Just as the sun and moon cause the equatorial pole to precess, so do

the planets of our solar system cause the ecliptic pole to precess; however,

the magnitude of this planetary precession is very small and will be considered

negligible in this discussion.

"Total general precession" is the sum of planetary and luni-solar pre-

cession and gives the changes in the mean vernal equinox of date from some

epoch. Total general precession amounts to 50". 2A53/year and can be con-

sidered uniform for practical use. This is the rate of westward rotation of

the mean vernal equinox of date.

As the equatorial pole precesses about the ecliptic pole, it also
experiences further disturbances known as nutations. Free Eulerian Nutations

are those which would occur if the earth were simply set in rotation and left

to itself without any dlsturbant forcem. This motion is analogous to the

torque free motion of a body of revolution in which the moment of inertia

about the spin axis is not equal to that about a perpendicular axis. The

body precesses about the angular momentum vector Just as the earth nutates

about its mean equatorial pole. Forced nutations ere those which are caused

by the changing positions in space of the sun, earth, and moon, which in

turn cause variations in their respective gravitational attractions to the
earth.

The most significant nutation is the 19 Year Lunar Nutation. This

nutatlon is caused by the precession of the moon's orbit. As mentioned earlier,

the moon's orbital plane is about 5° oblique to the mean ecliptic. The line

of nodes associated with these planes precesses with a period of about 18.6

years. The result is to change the direction of the small fluctuations in

potential experienced by the earth-moon system.
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Other forced nutations include the Semi-annualSolar Nutation and the
Fortnightly Lunar Nutation. Thesephenomenaare the result of the decreasing
torque that the sun and moonapply to the earth as they approachthe passing
of the equatorial plane. Due to symmetry,the net torque, as one of these
bodies passes through the equatorial plane, is zero.

2.2.2 Historical Background

Precession was discovered by Hipparchus in 125 B.C. by observing an

increase in the longitudes of stars with no perceptible change in latitudes.

In his Principia, Sir Issac Newton gave the first explanation of precession

in terms of dynamical theory.

Newton was also the first to note the nutation of the earth's axis

due to the influence of the sun. In 17_8 Bradley discovered nutations that

were due to the movement of the moon's nodes. Shortly after, a theoretical

explanation of nutation was presented by D'Alembert. The efforts of Euler

and Laplace helped to improve his explanation. A large portion of the more

recent investigations of nutation try to correlate theoretical and observed

results by introducing earth models that account for such characteristics as

elasticity, fluidity, inner core movement, and other physical properties.

Analyses such as these were initiated when S. Newcomb pointed out that dis-

crepancies between the theoretical lO-month period of Free Eulerian Nutation

and the ]3+-month period measured by S. C. Chandler were due to the effects

of the fludity of the oceans and the elasticity of the earth. Since then

many earth models have been invented. Increased geophysical data concerning

the interior of the earth has helped solve many problems that were significant

in determining a representative model of the earth.

The earth model that will be used in the following analysis is a rigid

ellipsoid which is later simplified to an oblate spheroid. This model does

not account for elasticity, fludity and other physical properties of the

earth; but it is sufficient to use for a fairly complete derivation of pre-

cession and nutation. It must be noted that the results of an analysis using

such a simplified model will not be exactly correct, but are sufficient for

most practical purposes. The complications that arise with a more complex

earth model are quite extensiv%and it is not thought that such considerations

would significantly add to the discussion. Eowever, empirical results from the

American Ephemeris and Nautical Almanac are shown with the theoretically

a_i_de-_t'io-_for precession_t_t'ion, and coordinate correction. This

presentation provides a set of best fit equations that correlate theory
and observation.

The method of analysis used in the derivation and solution of the

precession and nutation equations is basically the method presented by
W. _. Smart in his Celestial Mechanics.

2.2.3 Equations of Motion of an Ellipsoid Earth Model in a Potential Field

2.2.3.1 Kinetic Energy of a Rotating Body

Consider an ellipsoid whose semimajor and semiminor axes, for purposes

of generality, are all unequal. A body fixed coordinate system that is

aligned with the principal axes of the ellipsoid and has its origin at the
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center of the ellipsoid can be constructed. If the ellipsoid has someangular
velocity, _ , it can be shownthat the rotational kinetic energy, T , of
this body is

where T = rotational kinetic energy

I** = momentof inertia about x axis

I_ = momentof inertia about y axis

IzZ = momentof inertia about z axis

_, = body fixed angular velocity - x direction

_ = body fixed angular velocity - y direction

_A = body fixed angular velocity - z direction

The total kinetic energy is required in Lagrange's Equation. However, the

translation component is not a function of the variables of this analysis.

For this reason it need not be considered.

2.2.5.2 Euler Transformation

The body fixed angular velocity can be related to an inertially fixed

coordinate system by an Euler Transformation. This will enable the solution

of angular rates that are equal to the precession and nutation angular rates.

The axis system XGc Y@¢ ZG6 represents the geoecliptic inertial axis

system and X@& Y@@ Z@@ represents the body fixed system as illustrated
in the following sketch.

v

R A ONS UmCE( mZ L TO

W ABOUT - ZG
e ABOUT - X INTERMEDIATE

ABOUT - ZGG
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This sketch _llustrates the order of rotation from the inertial refer-

ence to body fixed axes. The corresponding relation between the body fixed

angular velocities and the Euler angle rates is as follows :

0 x . #sin @ sYn _ - @ cos

4;y . _sin @ cos _ + @ sin

 - coso

(2)

(])

The inertial axis system that is most useful in precession analyses

is the geoeclIptic system. This system is defined for some epoch, to, and

can be considered fixed in space for all future derivations.

2.2.3.3 Application of I_grange's _luation

The model of the solar system to be employed in the analyses of

precession and nutation is conservative (i.e., the forces can be expressed as

the gradient of a potential function). Thus, Lagrange's Equation can be

written in generalized coordinates as:

where for this study T -- total kinetic energy of rotation

U = total potential energy of earth-moon and earth-sun

systems (U for this definition of potential is

opposite the sense normally employed in potential

theory. Thus, U is in reality the work function.

This convention will be employed throughout this

monograph.)

qr: _ne rth geneA'_llsed eoordlnate

Applying Lagrmnge's Equation to the Euler angle, _, Equation (5)
becomes

But

°

(6)

(7)
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SO

Similarly

(s)

but

thus

Substituting Lagrange's equation,

(12)

SO

(13)

This is Lagrange's equation for the angle _ . In a similar manner, the

following equations for the Euler angles O and _ can be obtained as:
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2.2.3.4

The potential of a point mass,

of an ellipsoid earth model is

Potential Energy due to Ellipsoid Earth Model

, at a distance p
from the center

(See Page 58) (16)

where the geometry used for the potential energy formulation is defined in
the following sketch:

P.

It can be shown that the potential energy of the moon, assumed to be a point

mass, with respect to the ellipsoid earth model is

(17)
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where

G

_m

_s

P.

= potential energy of moon-earth system

= gravitational constant

=mass of the moon

=mass of the earth

= mass of the sun

= distance between centers of gravity

See Appendix A for a detailed derivation of Equation (17).

potential energy of the sun with respect to the earth is:

Similarly, the

jDr

Since for the present purposes the potential energy expressions will be

utilized in Lagrange's equation, the first two terms of each potential expres-

sion may be dropped since they are not functions of the Euler angles. The

abbreviated potential axpressions may now be written as:

2.2.3.5 The Oblate Spheroid Approximation

The earth can be considered to be an oblate spheroid. This approxima-

tion results in a simplification of the equations that have been derived thus

far. The moments of inertia about the % and _ axes are now equal, and
Lagrange's equation reduces to the following:

a. Lagrange 's equation for

@

=
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_u (_

Since _ is the Euler rotation about the Z body axis, and the spheroid is
symmetric about the Z axis, there is no change in potential due to a change

in _ only. The term @0/_ is zero.

Now _J,L Zz. -" 0 (23)

It should be noted that this result is for the rigid body model and that the

earth does experience very small changes in its angular velocity due to the

effects of tidal motion, elasticity, and other physical properties.

b. Lagrange's equation for ]r (For simplicity, the energy

equation will be used directly in Lagrange's equation)

¢

.ow .
dl " dllr-

(25)

(26)

and (27)

(28)

so Lagrange's equation for _ becomes

(29)
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It can be shown that _, _ _, _ are small when compared to _zo _

In this light, the equation for I//" becomes

- / _ (30)

c. Lagrange's equation for e : direct application of Lagrange's

equation yields

(31)

which can be simplified to

(32)

Now assuming that

becomes

• Z
and]_ are small compared with _ the equation

-_ )U
(33)

The abbreviated potential equations of the moon and sun can similarly

be simplified via the oblate spheroid approximation.

if,
(35)

so that the total potential is ( U = I.)mf IJ,s )

u - -3(z..- _,_)[c:m,,z,.,. _._z,_ 1
or in a form to be used later

(36)
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where

_S = samimajor axis of earth's orbit

@m _, samimajor axis of moon's orbit

L J

3

)
ms e.m

2.2.4 Solution of Equations

2.2.4.1 Free Eulerian Nutation

If an approximate evaluation of the potential is performed, it can be

shown that the ratio of the potential energy to the kinetic energy is very

small

IU._._/ < 2. x /o "7
"T"

and, if use is made of the fact that rxX - _y_O , Equations (14) and (15)
reduce to

or

(4o)

l"xx
(41)
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The solution to these differential equations is:

where p : _zo(Tz_ _xJ / IxX (4/+)

But, it is known that

(z,.-rxx)/ z.,

and since _zo : _.

= I� 3o,L2

radians/sidereal day,

X_z- ixx Iz___E

IZZ ZXX

.q?&Y; ) radians/sideral day

This value of 2 corresponds to a period of

: _ = (304.2) (.99671) = 303.91 sideral days
P

which is approximately 302 mean solar days. Hence, the theoretical

value for _e Eulerian free period of nutation is about ten months.

From the above derivation, a variation in the instantaneous latitude

would be expected equal to

(45)
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where Do = the mean latitude of some reference point

C = amplitude of the Eulerian Free Nutation

IO = frequency of the Eulerian Free Nutation

Observations, however, reveal that the actual variation in latitude is given
as the sum of two periodic terms:

(46)

in which the period of the first periodic term is one year and that of the

second about 14 months. Furthermore, the maximum deviation from _o is
0".3. Since the period of the observed nutation differs from the theoretical

value, some individuals have ignored the Eulerian Nutation and have attributed

the observed nutations to meteorological causes producing periodical changes
in the principal moments of inertia of the earth. Other individuals have

theoretically shown that the elasticity and fluidity of the earth, when taken

into account, can significantly extend the theoretical period of Eulerian
Nutation. T. H. Sloudshydetermined a period of 12 or 1/+months for Eulerian

Nutation using a simplified theory of rotation of the Earth with a fluid core.

The fact remains that the earth does experience a variation in latitude
of the order of

qB: + d'O cos ÷ o718 (47)

where _i = _radians/year

_ = _radians/year

_j = phase constant

L = phase constant

2.2.4.2 Solution of Equations for Precession and Forced Nutation

Equations (30) and (33) describe precession and nutation; however,

since these equations must be integrated, they will be repeated for convenience.

(_8)
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o= / _ (_9)

The solution to these equations can be found when the potential can be

expressed in terms of _ and _ . This operation is very tedius, however,

and does not supplement this discussion. Thus, the development has been

placed in Appendix Bo and the expression for the abbreviated form of poten-

tial energy in terms of the Euler angles is repeated below:

: F s,_,'e ,[G,(_cos V,'- _-s,,,_) s/,,e cosg _-H,sl_'e]'f., +'V" (50)

where

% = secular constant (Z z cos.s"L.-- _t-I-._T.. _" )

% -- secul_constant(Z°5,--_.:_: +_" )

_r = obliquity of true ecliptic with respect to the fixed
ecliptic at some epoch

-O_ = longitude of the earth's ascending node

= obliquity of moons orbital plane with respect to the

true ecliptic

• adjusted eccentricity of the apparent orbit of the sun
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ej = eccentricity of earth's orbit at epoch

Gm = eccentricity of moon's orbit

_J =_(_ + the angle between the earth's ascending node and

the lunar node

Mm = mean anomaly of moon

Q2_ = longitude of perihelion of moon' s orbit

= mean anomaly in earth's orbit

Q_ = longitude of perihelion of earth's orbit

Equation (50) contains two significant groups of terms. The expression

for '_" is solely a collection of periodic terms that represent the fluctua-

tions in the potential that are associated with nutations. The rest of the

potential expression consists of terms that are associated with precession.

The significance of the two-part potential expression is that it enables a

two-part solution. The general solutions may be written as follows:

or
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where = luni-solar precession

69_ = obliquity associated with the luni-solar precession

as contrasted with i_ which Is the corresponding

obliquity for the true ease

= principal terms for nutation in longitude

= obliquity associated with nutation

When the potential energy equation is combined with the precession and

nutation expression, the result is:

(55)

/ _r
st_ O c3G

(56)

The solution of Equations (55) and (56) can be simplified by choosing

the epoch _@ such that _ is a very small angle. This can be accomplished

by choosing the X&_ axis to be very close to the lunar node at _o . Using

the simplifications mentioned above, and neglecting V, the expressions for

precession reduce to:

_',,,:Zrco,_ o°.CG,?_ co_Z.eo+ z,,_os e_o)"r.. (57)
S,vv_o

e.,,,= (G,g, cos eo)"c. (58)

Integration of these equations yields

co_ Zeo e.) _-"W,,,: % +(z.,=-:ose°)-t +(G,,_,+;_ + ZK:os --z. (59)
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o,,, ---e° -,. eo) (6o)

For an epoch _o = 1950 January O, Greenwich Mean Noon, and the unit of time

taken as the Julian year of 365.25 mean solar days, the following values for

the coefficients for the above expressions have been determined by

Dr. J. G. Porter of the H. M. Nautical Almanac Office. For convenience,

they are shown with their respective equations.

9",, = 50. 37-3z. 1: - o. ooo/0_a (6l)

e_, Z.5° 26" " "= 4:4-. 8# ÷ 5. roOSx/O-_ L (62)

The equations for nutation are derived by utilizing the remaining
periodic terms of Equations (55) and (56), i.e., those terms containing

_,r = / _V" (63)

szHe _e

Now upon replacing _ by e o after differentiation, the nutation equations
become

cos _-_o
-- Cos (N + _') (65)

S,,ve o

+ cos(__,_ +z _, +z.V.')- 5(L%cos M,,,+¢,,co s ,,4s_
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But, the lunar node retrogrades on the ecliptic in a period of about 18.6

years, so _ can be written in the form

Ax= _o- x_'_ (67)

And for present purposes, it is sufficient to write the precession angle as

9'= % * _'_ (68)

Thus, by adding Equations (67) and (68)

N ÷_ = _ - B _ (69)

where _ = A[o +_e

and _ = _ '- _'

In order to simplify the algebra in dealing with Equations (65) and (66),

following substitutions are introduced:

the

51_, e o
(7o)

(71)
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Integrating Equations (65) and (66) now yields the expressions for the
forced nutation in longitude and the associated obliquity.

FL s,_io
s,,_ (z A,'+ Z VO

(72)

(73)

where _m = the mean angular velocity of the moon about its orbit

_s = the mean angular velocity of the earth about its orbit

The Nautical Almanac lists the calculated values for the nutation equa-
tions to be:

"_ = t 7." a _ s.,.(,v-_V.)_- "- o.z/ ._,,,,,(z_+a Y-) -/.z7 _,,,,,(2,,,,.,.,z_)

_q
(75)

All terms of amplitudes less than 0".05 have been neglected.

2.2.5 Coordinate Correction

Consider a point in space the position of which is measured with respect

to an earth fixed coordinate system by the angles _(o and To , the Right
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where/_/ is the magnitude of the vector discussed.

The components of this vector may now be expressed in terms of inertial

components as follows:

-._._ ¢._ c,_,_ e._ _, .._.. _ _

o -_ e_ _ _,,r ,r,, _j

SO

(?9)

(80)

(81)

But, the coordinates of the vector with respect to the inertial refer-

ence can be expressed by the Right Ascension and Declination coordinates _ ,

S 2 or

(82)
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Ascension and Declination, respectively. If it is desired to find the corres-

ponding position of this point with respect to some inertially fixed coordin-

ate system XGE50 YGE50 ZGE50, the angular corrections for precession and nuta-
tlon must be taken into account. The following is a derivation of the correc-

tion terms for precession. Correction terms for nutation will be presented

following the precession discussion.

2.2.5.1 Precession Correction

The previously defined Euler angle rotations must be used to relate

the inertially fixed reference to the precessing coordinate system of date.

This can be accomplished by using the known precession angle and its associated

obliquity, _m and @m, respectively. The inertial reference in this case

would be the one from which the precession is referenced, i.e., the one

determined by the mean equinox at epoch, the mean equatorial pole at epoch,

and a perpendicular to the previous two. The coordinate system of date is

the one determined by the mean equinox of date, the mean equatorial pole of

date, and a perpendicular to the previous two.

A vector, _, in the equatorial coordinate system defined by the mean

equinox of date can be transformed to the inertial reference by the following

operator:

XG£_'o

YGFSo "-

_GJr._o

m

co • cos e. s,. W.. e.. s,., ÷.,.

5/.,v' _. Cos, I/_.w,.

o - $/_' e.._ Cos G.._

Xc,,

.Z ¢,_

- MEAM

or _GESO = _I _GEmean

The above operator transforms any vector measured in the coordinate system

of date to an inertial system in which the precession angle _m and the

obliquity angle @m define the transformation as a function of time (equation

61, 62).

The quantity that is measured in a sighting is in the true reference

frame of date. If Right Ascenslon and Declination Coordinates are used, the

vector can be expressed in rectangular components which are also in a true

frame of date.

= /;'/ co, cos<. (v6)
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Y_,,,, = I; I eo,_oc s,,v_ (83)

(84)

so that equating the two sets of inertial components for the point, a relation-

ship between the measured and inertial Right Ascension and Declination coor-
dinates is found.

cos £¢0s oL= cos _ co5 % cos _'_,,, _s _ s/,v % cos 8., _/_ (85)

+ ,f/A/ oc6

(86)

(8?)

In order to solve these equations for the correction term, _-_o

the first equation is multiplied b E S/M _o and the second equation by
cos_. The first is then subtracted from the second. The results on the

left side of the equation are as follows:
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Co5_ s/a,, o_ go._ % - eos J"eos o_ ._/a/ O(o

"-- _oj ,f" ( s/x/ o_ cos o(o - e.os e_r ._/_, O(o)

(88)

Now this equation can be solved forK- O_o which is the correction term for
the Right Ascension term for precession. The detailed equation follows:

,,/1-s.... g )

(89)

where si_ j is defined in Equation (87). Since _m" and _ are explicit

functions of time, the correction term,_- _ , is a function of_jc_
and _ . The correction term for the Declination, J- _ , coordinate may be

derived by expressing s/_J as follows:

, eo_g s,.(;- ;o)

(90)

Now since _-#o is very small, the following approximations are valid:
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61td (d-g) _ or -_ (radians)

Equation (87) thus reduces to

(91)

_o5 4

The declination correction term is seen to be a function of J@ , 0¢

this is analogous to the Right Ascension correction term.

(92)

and L

2.2.5.2 Nutation Correction

correction matrix is :

/ ' V'(COS e.. -_ SlMe.,) ' _(_ COS _. + S/Me.)
I I

joZ, ....e.,) _ cose,.(_cose,.÷s//ue,.)

_ - _cose,, sl_e_(s_/e,. ,_cose.) I -s_JJe,. (-_ s_o.,cose,.)

' ' ,,,,e.(.,o,o.,,,,,o4
Zce -NsJ_'_ I I

The correction matrix for nutation is obtained by taking rotations of

about the true + XGG axis and _ about + EGE Thus, the nutation

(93)

Equations (74) and (75) give the detailed expressions for _ and _ . When

these values are used with @m and _m in N , the appropriate nutation

correction matrix is obtained for an orthogonal transformation from the

true geographic frame of date to the mean geographic frame of date. Once

the nutation correction is performed, the correction for precession may be

made with the matrix _P_ •

The Right Ascension and Declination correction terms for nutation can

be derived in a similar manner to that of the precession correction terms.

,//- "

_//- 51M _Z _

fl¢_
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where
_/.- the elements of IN]

Cx"- Right Ascension value uncorrected for nutation

_'- Declination value uncorrected for nutation

o_o= Right Ascension value corrected for nutation but not

corrected for precession

_= Declination value corrected for nutation but not corrected

for precession.

/P.//,v!:

If it is desired, a direct transformation may be performed from the true

reference to the inertial reference in one transformation.

_GE50 - [ P ] [ W ] _GEtrue

cos - I

o ' - stwve_ -@, eoj e_ ' -'@ _,_ + cm e_
I I

This matrix accounts for both precession and nutation.

'i "_ cos eh,__0__

,, e.. ,,-e.)]

Due to the orthogonality of all the transformations used above, it is

possible to determine the inverse relationships easily by employing the

transpose of the matrices.

rGEmean • trJ rGEso

IN] -i r_GEmeanrGEtrue =

_GEtru e = [N 7 -1 [p; -1 r_GE50

2.2.5.3 Empirical Correction

The Ephemeris contains the empirical equations for total general

precession. It must be noted that the previous analysis developed all

equations with the assumption that planetary precession was negligible.

Therefore, extremely small deviations would be expected in certain elements

of the transformation matrices (e.g., terms that were theoretically zero

will be extremely small numbers).
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The values for the elements,p,j , of the precession correction

matrix, [P] , as listed in the Ephemeris are as follows (epoch 1950.0)

Pll • 1 - (29696 T 2 + 13 T 3) XlO -8

P12 = (2234941 T + 676 T2 - 221 T 3) XlO -8

P13 = (971690 T - 207 T2 - 96 T 3) XlO -8

P21 : - PI2

_22 = 1 - (24975 T2 + 15 T3) XIO -8

P23 = - (I0858 T 2) XIO "8

: - el3

e32:e23
P33 - 1 - (4721 T 2) XIO -8

where T is measured in tropical centuries from 1950.0.

The empirical results for nutation correction are slightly more

complicated but can be expressed as functions of time. The Nautical

Almanac uses the following parameters to describe nutation:

p' = mean longitude of the lunar perigee, measured in the ecliptic

from the mean equinox of date to the mean ascending node of the

lunar orbit and then along the orbit.

L : geometric mean longitude, mean equinox of date.

P = mean longitude of perigee, mean equinox of date.

: mean longitude of Moon, measured in ecliptic from mean equinox of

date to mean ascending node of lunar orbit and then along the orbit.

: longitude of the mean ascending node of the lunar orbit on the

ecliptic measured from the mean equinox of date
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where

and

I'I : 12:112790

: 64:375452

r' : 208:84399

r = 282,°08053

T : 280:08121

-.05253922D

+13.176397])

+.II140_08D

+.0020795T

-.OO1131575T

-.O10334T

+.000047068D +.0004553T

+.98564734D +.O00303(T+T 2)

+.002081T 2

-.00113015T 2

-.010343T 2

+.0004575T 2

+.000002T3

-.0000019T3

-.0OO012T3

+.000003T3

D : Days since reference epoch [1950.0, J.D. 2433282.423)

T - Julian centuries past reference epoch

The Nautical Almanac also separates the short period nutations and the long

period nutations as follows:

where AE = long period obliquity of nutation

A_ = long period nutatlon in longitude

dg - short period obliquity of nutation

dM = short period nutatlon in longutide

and gives the values for these parameters as:

aF x 104 = -(47?8927 + .0482T) sin n

+ .5800 sin 2/I - 3.5361 sin 2L - .1378 sin (3L -r)

+ .0594 sin (L +r) + .034& sin (2L -n ) + .0125 sin (2_' -_)

+ .3500 sin (L -r) + .0125 sin (2L - 2r')

d_x 104 = -_5658 sin 2_- .0950 sin (24 -D)

•0725 sin (3(-r') + .0317 sin (_+I _')

+ .0161 sin (_ -I_' +fl) + .0158 sin (_-_' -f2)

- .0144 sin (3_ +r' - 2L) - .0122 sin (3_-_' -fl)
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+ .1875 sin (4 -r') + .0078 sin (29- 2_')

+ .414 sin (4 +_' " 2L) + .0167 sin (2_- 2L)

- .0089 sin (44- 2L).
O

A£ x 104 = 25.5844 cos_- .2511 cos 2fl

+ 1.5336 cos 2L + .0666 cos (3L -I")

- .0258 cos (L +_) - .0183 cos (2L-_I)

- .0067 cos (2P' -f))

d_ X 104 = 0.2456 COS 24 + .0508 cos (2_ -_I)

+ .0369 cos (3_-r,) - .0139 cos (_ +_,)

.0086cos + .0083cos(¢-T,,

+ .0061 cos (3 4 +r' - 2L) + .0064 cos (3_- r' -Q)

The nutatlon correction matrix can be approximated as:

N

i _cos Q _Zsin _G 1

= - _ cos i_ i _e-

- _" sinL'¢ -.9_ i

where ic is utilized rather than @m due to the fact that it represents

general precession better. This quantity is numerically equal to

Ze = 23_4457587 - .01309404T

- .00000088T 2 + .O0000050T 3
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2.3 TIMESTANDARDS,MEASUREANDCONVERSION

2.3. i Astronomical Time Standards

Time in the most basic sense is a measure of the elapsed interval

between two observed events relative to the period of a stable oscillation

referred to as the time reckoner. Thus, time measurement may be based on

any of a number of observed uniform and periodic phenomenon (for example,

the decay of radioactive isotopes, the observed motions of some man-made

periodic system, the observed motions of celestia.] bodies, etc. ). However,

until the advent of the atomic clock, no system was devised which was

capable of approaching the accuracy obtained by employing the astronomical
time reckoner. Since this system of measure is still employed as the time

standard, the paragraphs which follow are considered essential for the

successful interpretation of material presented in all of the remaining

monographs of this series.

2.3.1.1 Sidereal Time

This measure of time is based on the apparent motion of the stars

relative to an observer on the earth and uses for the fundamental period the

interval between two successive transits through the observer's meridian of

any selected star (1 sidereal day = 8616_.O905_ mean solar seconds = 360 degrees).

This interval (or the corresponding spin rate of the earth) thus defines the

spin vector for, or angular momentum corresponding t_ the earth's rotation at

the epoch in question. Discussions elsewhere in this monograph pertaining to

the rate of change of this angular momentum shows that the vector is not

constant but rather nutates and precesses. These discussions do not indicate,however,

that the magnitude of the spin is variable; References 2, 3, _, 5, and 6
indicate that the mathematical model utilized to derive these results was

slightly in error; and that tidal friction and other forces of similar nature

are producing secular and periodic changes in the rotational rate of the earth.

The observed effects on a day-to-day basis are, however, almost completely

inappreciable. For this reason, the sidereal day mentioned previously or a

uniform measure of the perturbed day will be considered to be known; and the

effects of the earth's spin variations will be enumerated when they are

significant.

While the star which is selected for the definition of this period is

seen to be unimportant, the base of measure for each of several observations

must be known in order to incorporate a data acquired by others in any given

analysis. Thus, to avoid numerous problems, the vernal equinox or first

point of Aries (though the vernal equinox no longer lies in the constellation
Aries) has been selected as the reference for all sidereal times. In the most

general sense then, sidereal time is the hour angle (angle between the

observers meridian and the meridian of the object being observed measured

positive toward west) of the vernal equinox. But since two observers at
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different longitudes could measure the same sidereal times (at different times,
of course), it is also necessary to differentiate between the various local

sidereal times. This step is accomplished by establishing a reference meridian
(that of Greenwich) and correcting all times in such a fashion that the instan-

taneous position of the reference meridian is computed

Greenwich Sidereal Time = local S.T. + longitude (%)

where: longitude is measured in hours (1 hour = 15 degrees) in the astronomical

convention, i.e., positive to the west,

N
NORTH CELESTIAL

POLE

OBSERVER, S

MERIDIAN

MERIDIAN OF

GREENWICH

PLANE
¥

EQUATORIAL

PLANE

MEAN VERNAL

EQUINOX

LOCAL S.T.

O.$. T.
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and by adopting the convention that zero hours Greenwich sidereal time corres-

ponds to the upper transit of the vernal equinox through the meridian of
Greenwhich.

There is, however, a problem arising from the referencing of sidereal

times to the vernal equinox since a unit vector in this direction moves due

to the motion of the ecliptic plane and the change in orientation of the

spin vector of the earth. This fact has lead to the definition of two sidereal

times: (1) apparent sidereal time and (2) mean sidereal time. Apparent

sidereal time is referenced to the true equator of date and, therefore,

includes adjustments for both nutation and precession. However, since the

nutation correction is itself a variable, this definition of sidereal time

is nonuniform and is not generally em_ployed. Rather, a correction tabulated

in the ephemeris and known as the equation of the equinox is applied to the

apparent sidereal time to reduce it to mean sidereal time (referenced to the

mean equator of date which precesses at a uniform rate).

2.3.1.2 Universal Time

From the standpoint of the sequencing of civil functions, the most

obvious time standard is the apparent motion of the sun about the earth.

Unfortunately, due to eccentricity of the earth's orbit, such a time standard
would be nonuniform. This situation leads to the definition of a fictitious

sun moving in a circular orbit in the plane of the earth's equator with a

period exactly equal to that of the true sun (the equatorial year or the

interval between upper transits of the sun through the mean equator is

365.242,198,79 - .000,006,14T, where T denotes Julian centuries since 1900.0,

zero hours January Zero on the Besselian Calendar). Successive upper transits

of this fictitious sun (referred to most frequently as the mean sun) through

the meridian of an observer then defined the mean solar day and its divisions

(i mean solar sec = 1/86400 mean solar day).

With the introduction of Newcomb's Tables of the Sun_, terminology

changed slightly and a standard solar time referred to as Universal Time was

defined. In his table, the Right Ascension of the mean sun was given by
(Newcomb's Notation)

where T is centuries from Greenwich mean noon January O, 1900.

Corresponding to this expression for _ , Universal Time (or Greenwich mean

time, _) referenced to mean midnight rather than noon was defined to be

h
U.T. = 12 + Greenwich

h
= 12 + HA (R)

hour angle of R

Now expanding the hour angle (by referring to the following sketch), U.T. can

be related directly to Greenwich sidereal time and R
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N

GREENWICH

/I
U.T. : IZ .- G.S.T. - R

This equation, thus, shows that universal time and sidereal time are equiva-

lent measures.

Unfortunately, Newcomb considered T to be a measure of mean solar

time (though he did not specify the manner in which T was to be measured)

and did not have information available to him pertaining to the variable rate

of rotation of the earth. Therefore, the value of R predicted utilizing

these assumptions does not correspond to the true position of the mean sun

(it is noted that the errors are very small compared to the hour angle of the

true sun with respect to the mean sun). However, since the mean sun itself

was an artificial means of defining a uniform time, Newcomb's equation for
R has been retained in the definition of U.T. with T now defi_ed to be

Julian centuries (36525 days of U.T.) elapsed since 12 hours E. T. on

January 0 19OO. Thus, Universal Time is a precise measure of time,

by definition. Further, since it is precise, and since the predicted Right

Ascensions of the time reckoner correspond so closely to those of the mean

sun (and thus to the true sun), U.T. is the most logical standard to be

utilized as the reference for all civil times.

Now since there is a uniform time defined for points along the Greenwich

meridian, a local mean time for other meridians (not to be confused with zonal

time which is the local mean time for a 15 ° interval of longitudes equal to

time along the bisecting meridian) can be defined by subtracting the longitude

of the local station from U.T., i.e.,

L.M.T. : U.T- x

where _ is measured in hours, etc., positive to the west of Greenwich to be

consistant with astronomical convention.

2.3.1.3 Ephemeris Time

Based on the observations of the introductory sentences to this section

of the monograph, it can be argued that there is no absolute time scale. Thus,

in periodic dynamical systems, the problem becomes one of measuring time on
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somearbitrary scale convenient for the problem at hand. The dynamical systems
of astronomical interest are no exception since here a uniform time depending
on the equations of motion for determination canbe adoptedand time defined
by matching the predicted and observedbehavior of the system. This step has,
in fact, been accomplishedin the definition of EphemerisTimeby requiring
that the motion of the sun relative to the earth be observedand by selecting
a time scale which agreed as well as possible with the actual solar motions
(any other body could have been employedwithout loss of generality) and
universal time during the 19th century.

The fundamental epochfrom which EphemerisTimeis reckonedwasadopted
by Newcombas 12 E.T. January 0 1900whenthe meanlongitude
(= meananomalyplus argumentof periapse plus longitude of the ascendingnode)
of the sun was 279° _i' _8" .O&. At the sametime Newcombdefined the funda-
mental period as the tropical year (i.e., the interval required for the sun's
meanlongitude to increase by 360 degrees) and expressedthe meanlongitude
in the following equation

L_ 279" _/ _O." o¥ + I_7602Y68". 13T _ /'.o87 T 2

where T is centuries of 36525 ephemeris days elapsed since the fundamental

epoch. This equation axhibits the fact that the tropical year is not uniform.

Thus, to conserve the system of time used by Newcomb in his theories of motion

and assure its uniformity, the Comite Internationale des Poids at Mesures in

1957 adooted the ephemeris second of--mean noon E.T. January 0 1900 as the funda-

mental invarSable unit of ephemeris time (this unit is 1/31556925.97_7 tropical
year of 1900).

Ephemeris time at any given instant is obtained empirically by comparing

the observed and gravitationally predicted positions of some body. When,

after interpolation, the argument in the tabulated ephemeris is found, Ephemeris

time is known and the empirical correction to universal times can be computed.

AT - E.T. - U.T.

Raw (that is, unsmoothed) data for _T can be found on Page 89 of the

Explanatory Supplement to the Ephemeris." These data and the least squares

parabolic which fits them are presented in Figure I for the time period of

1930.5 to 1960.5. Therefore, an approximate value of AT can be computed

for any time in the vicinity of the interval for which there was data and

universal time corrected to yield the desired ephemeris epoch.

As may be seen, ephemeris time is not connected to the rotational rate

of the earth and is thus not suitable for the computation of quantities which

depend on this rotational rate. However, a meridian on an imaginary ellipsoid

enclosing the earth's surface and rotating at a uniform rather than a variable

rate has been introduced and defined as the ephemeris meridian. This ephemeris

meridian was selected in such a manner that had the earth rotated uniformly

since mean noon January O 19OO, the Greenwich and ephemeris meridians would

coincide. Actually,
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they differ and the ephemeris meridian is 1.O02738 _ T sec east of the Greenwich

meridian. Thus, while E.T. is not generally employed in such problems, it can

be adopted and the results related to the true earth. This approach is not

recommended for most problems; however, for those jobs in which a great deal

of ephemeris lookup is encountered, it may be convenient to operate with a

single time standard.

2.3.1.A Julian Date

All of the previously defined times have been described in such a manner

that no readily available chronological time record exists. This deficiency

requires cumbersome conversion of dates and greatly magnifies problems of

analysis, since in order to relate any two measurements in time, they must

first be referred to the same epoch. This step, in turn, requires only that

some epoch pre-dating the time period in question be selected and that universal

time be recorded on a continuous basis from this epoch. But, rather than

selecting a new epoch for each problem attacked, an arbitrary date sufficiently

far in the past to pre-date recorded history was adopted (Greenwich mean noon
1 January 4713 BC on the Julian proleptic calender) and given the name Julian

Day (J.D.) zero.

It is noted before passing that since ephemeris time and universal time

differ only by the small empirical correction, the Julian Day numbers can

also be interpreted as Julian Emphemeris Dates (J.E.D.) if the initial epoch

is reckoned to be 12 E.T. 1 January _713 BC.

2.3.2 Determination and Conversion of Astronomical Times

As was apparent in the discussions which preceded, the various time
scales were equivalent (or were relatable if observed empirical corrections

could be estimated). Thus, in order to define any of the three, it is neces-

sary to determine at least one. _ile this determination itself may not be

of great interest in most problems connected with this study, the reduction
of the observed data and the interrelation of these time scales is of direct

interest. For this reason, a modified numerical example based on the example
presented in the "Supplement to the Ephemeris" (Page 847 will be presented.

This numerical example assumes that local apparent sidereal time is available

and progresses through mean sidereal time to universal time to ephemeris time.

However, it must be noted that the process can be inverted at any point in
the sample should one of the other times be given.

It is assumed that an identifiable portion of the celestial sphere has

been observed from a known and calibrated station and that the observed posi-

tion data have been correlated with an ephemeris of the apparent positions
of the observed stars for the purpose of computing the position of the vernal

equinox of date, the corresponding local apparent sidereal time, and the

values of universal and ephemeris time. Data for the sample are as follows:
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Date: 7 March 1960 (J.D. 2437000.5 = Oh U.T.)

Longitude: 5h 08m 15s.75 W

Local Apparent S.T. : 13h 05TM 37s.249

Approximately 2h local mean time (= 7h U.T. )

and reduction proceeds as:

observed local apparent sideral time

equation of the equinoxes (interpolated to
7h U.T. obtained from the American

Ephemeris and Nautical Almanac (AENA)

local mean sidereal time

longitude (add if W)

Greenwich mean sidereal time

13h O5m 37s.249

- .046

13 05 37 .295

5 05 15 .750

18 13 53 •045

minus right ascension of time reckoner +12 h

J.D. ohu.T, of epoch date 243 7000.5

J.D. 1900.5 241 5020.0

elapsed time T. 21980.5

Julian centuries T-060179329227
-R +12 h = -6h 38m 45s.836

-86401s4.  T
-0.0929 T_

universal time of observation,

sidereal units ( 1 sidereal day =

86164.O9054 mean solar sec)

conversion to mean solar time units

(i day = 86400 MSS) direct conversion

or by Table VIII AENA (reduction to
mean solar time)

universal time of observation (solar units)

T (the empirical correction to convert

U.T. to Ephemeris Time) from Fig. 1

Ephemeris Time

-lO 58 50. 971

7 15 2. 074

1 ll. 269

7 13 50. 8O5

35.

7 14 26.
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2.3.3 Dynamical Time

As was pointed out in the discussion of Ephemeris time, the time scale

is not absolute and may be selected arbitrarily to simplify the solution.

Thus, in problems concerning the motion of a small satellite in the vicinity

of a large mass, it is sometimes desirable to adopt a measure of time other

than one of those discussed (for internal computations) and defer relation

to these standards until a later point in the computation. In these cases

it is convenient to consider the equations of motion for a particle whose

position vector is _ in a central force field of a mass whose gravitational

constant is _A •

°.

r - -_ __
,r I

and note that if I" is defined to be _'=I_ t then

@@

t" _ -- = - F

T z /.,

and

@_ _ .JL I .=6

r =- _ = V = _V_

The gravitational constant has, thus, been absorbed (note that the new time

variable t has the units of . This absorption process appears, on

its face, to accomplish little other than the removal of scaling operation

at various points in the numerical solution of the equations of motion by

substituting a scaling at the two extremes of the calculation procedure.

However, it is important to note that the trajectory in terms of the variable

can be computed to any precision desired and that the results become

more accurate as the uncertainty in j_c is reduced (References 7, 8, 9, iO

11). In this sense, then, the trajectory is universal, and the process is

akin to that employed in the preparation of the ephemeris where again the

accuracy improvement is not obtainable without the absorption process.

Since time now has the general units of length, it is important to

specify this measure. Various standards of length have been employed;

however, the most desirable standard for studies of motion in the vicinity
of the earth is the earth' s equatorial radius (R_. The advisability of

this selection is apparent when it is realized that Re like _ is uncer-

tain (thus subject to improvement) and that all vector components (cartesian)

both relative to points on earth and to some base frame can, thus, be rescaled

as 1_m becomes better known. Best values of these constants in conventional
units are (Reference ll)

%( = (. _qS, 601.5 _- I. ) K_/C_,_ _=I_- ,_¢)2

Re: ( 6_78. 163 +-.o2) Hm
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3. RECOMMENDED PROCEDURES

The material presented in this monograph pertains primarily to defini-

tion and standardization of terminology to be employed in the remaining

monographs of the series. Where this material duplicates information in the

literature and where previously accepted standards exist, no alteration has

been proposed. However, there are several areas (principally within the

discussion of coordinate systems) in which it has been necessary to adopt a

notation, for example, the manner of identifying coordinate frames. These

adoptions are the result of careful attention to matters pertaining to the

entire series of monographs and with minor exception are recommended for

these applications.
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Appendix A

Potential Energy of an Ellipsoid Earth Model

Referring to the sketch on Page 61 for geomemetrical definitions and

to W, M, Smart (Celestial Mechanics) for the basic theory leads to the

develop_nent of the potential energy of an ellipsoidal earth. This

development will be presented below,

From the sketch it is seen that

#

If the dot product of each side is taken with itself equation (A1) becomes

A new right handed ortho_onal coordinate system is now chosen with its

principal direction in the _ direction. The_ vector is expressed as

(_ ,7, _) in this new system. In this light

Now I_.( 2 : (_(2-21ef_ ÷ I;f 2
or

(A3)

(A4)

(A_)

The vector notation has been omitted for simplicity. It is understood

that the symbols stand for the magnitude of their respective vectors.

Equation (A4) can be used in Equation 16 if it is expressed as

r2" :
or N @ e_
It is possible zo expand equation (A6) in a binomial series and Ret a

close approxzmatzon for_because _/_ and_are very small (the distance

to dm as compared to distance to the Sun or Moon). Carryin_ terms to the

order of [___ 4 equation (16) becomes

I¢!

=_(_ _÷__+_i2__2+_'_2-_eV

+ 35j 4 - 3092r 2 + 3r4 1 (A7)

I

where n_L" _"$ or M m
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Let (i, m, n) be the direction cosines for • with respect to the body
fixed axes. Since the _ axis was chosen to be in this direction, a
unit vector 0¢, maybe defines to be

A

= (|, m, n) (AS)

In terms of the body fixed axis system, the _ vector can be expressed as

= (x, y, z) (A9)

Since _ is the component of _ in the _ direction, it can be found as

follows_
A

g : _ • 7 : _X + my + nz (A10)

Now the various terms of equation (A7) can be evaluated.

(l)

(2)

(3)

de = m d

dm = (Ix + my + n z) dm = O

(due to symmetry)

_(3_2 . r2) dm :dI'V_,!r2 - 3 (_2 + _.p2)} dm

(All )

(AZ2 )

(A13)

and

Hence

Now from the definition of moment of inertia, the following is true'

--/2 (x2÷ y2 ÷ z2)dm :/2r2 dm (Al.)Ixx + Iyy
+ llm

"v v
(AI5)

axis.

v(_2 + _2) dm : I'

where I' is the moment of inertia about the

,_(3_ 2 - dm = Ixx + lyy Is,_r 2 ) 31'+ ( AI6 )

(,) 1!5_ 3 _ 3_ r 2) dm : /

V my _n
_W [5 (ix + + nz) 3 -3 (_x ÷ my + nz) (_2 _) (x2 ÷ y2 ÷ z2)]dm(AlV)

All terms of this expression integrate to zero when taken over

the entire volume because of symmetry.

f(5_3 . 3_r 2) dm : 0 (AI8)So
W

(5) S.(35f _ - 30_2r2 + 3r 4) dm is of the order of _z aW, where
v

a is a semi axis of the ellipsoid earth model.

Similarly,

I(3 _ 2-r2) dm is of the order ofmea2,
W

94



Comparing the contribution of the third and fifth terms of

equation A7, it is seen from the above expressions that the

order of magnitude of the fifth term is a_ times as small as

the third. Since this corresponds to _2

(_l_ 2, the fifth term may be neglected.

The expressionlb°Ifor potential correct to order(a_ 3 may now be written as

%rl

_ = Gm,[m__e + Ixx + Iv_ + Iss - 31' I (AIg)

J

It is well known that the moment of inertia about any axis in terms of the

principal moments of inertia is:

also

so

I' - Ixx 12 + lyy m ? + Izz n2 (A20)

12+ _+ _ : I (A21)

I' - _ - (Ixx - Iyy) m2 + (I,u - Ixx) n2 (A22)

The position in space of the body mi is related to the earth fixed

axis system by the direction cosines.

._=y .=z
e

Finally, (A19) becomes:

"_-G_i[_ + Ix,+ 2,5I'"- 2Ixx I

+ 3(I_-x - Iw) y2_. 3(I,, - Ix_)

J
(_3)
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APPENDIX B

___nsion of U in Terms of e and

If reference is made to the figure on page 58 for the definition of

Euler angles and to W. M. Smart (Celestial Mechanics) for the basic method

of analysis, the expansion of the potential energy of the ellipsoidal earth
model can be expressed in terms of the angles O and _ . This derivation is

shown below.

From a cartesian coordinate transformation it is seen that

mZGG = mXGg sine sing" + mYG_ sine cos_" + mzG_cos e (BI)

= sYGE mZG ESZGG sXGE sine sin_ + sine cos_ + cos O (B2)

Also, the standard polar spherical to rectangular transformation can be used

to find XGg , YGE and ZC_.

XGE= _cosL cos B

XGE= _sinL cos B

 sin B

(B3)

Henc e,

ZGG = cos B sine sin (L+_) + sin B cos e (BA)

The following sketch defines the geometry to be used in the subsequent analysis.
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If equation (BA) is expressed in terms of the variables used in equation (50),

then the expression for LT can be found in terms of the Euler angles e and

by using equation (37). The following angles are now defined:

where

Also,

KZo = iT

ZoM = _/2 - B

KM = _/2-b

KZoM = "_/2 +L -I'L

ZoKN= _12 - (_ -__)

= XoA + AE

b =EM

the following identies are true:

sin B = sin b cos iT + cos b sin iT sin (_-_ (BS)

cos B sin (4-/I) = -sin b sin iT + cos b cos iT sin (_-.CA)

cos B cos(L-/_ = cos b cos (_-X_

(B6)

(_)

Define XoA + AC = N

N + CM =_J"

SO MC =It- N

ME=b

CE=_-N

MCE = i
O

MEC = "_12

Now cos(%r- N) = cos b cos (_-_)

sin(V'- N) cos io = cos b sin (_- N)

sin(It- N) sin io = sin b

(B8)

(Bg)

(BIO)
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Writing

becomes

C[-/_ + C_+-fL) for Ch+_), ZGG

[cosB
9

+ in.sin( *y-)[cosBcos(L-A)]+ cose sin B (BII)

Since iT is a very small angle, it is sufficient to write:

sin iT = iT

cos iT = i

Now equation (B6) becomes

cos B sin(L-/_ =-i T sin b + cos b sin (_-_) (B12)

Writing (_- N) + (N -/D_) for ( _-J_ and using equations (B8), (B9), and
(BlO), equation (B12) becomes

cos B =-i T sin io sin (b,'-N) + cos io sin (12"- N) cos (N -_

+ cos (12"-N) sin (N -_0 (B13)

Since the angle io is approximately 5_2, cos io can be written as

cos io = 1 - 1/2 sin2 io

with sufficient accuracy (using a binomial expansion and neglecting terms of

higher order than sin3 io).

Now

cos B sin (L -_i) = (1 - 1/A sin 2 io) sin(Ir-Xh) (Bl&)

- I/A sin 2 io sin (%r- 2N +/I.)

cos B cos(L-_ = (i - I/A sin 2 io) cos(_--_

+ i/A sin 2 io cos(?#-- 2N +.2.) (BI5)

99



sin B = sin i o sin(_,'- N) + i r sin(_r-_ (BI6)

The expression for ZGGnow becomes

= (i - i/& sin 2 i o) sine sin(Tf+_) + sin io cos@ sin (_r- N)

+ i T cos e sin(Tf-_ - i/A sin 2 io sine sin(77- 2N +_) (BIT)

Equation (37) requires an expression (__)2for in order for it to be useful.

If equation (B17) is squared a very complex _expression results. However, all

oeriodic terms whose coefficients are of greater order than iT or sin 2 io do

not contribute a significant amount in the end result when an integration of

lagrange's equation is performed.

Henc e,

-(z12-ll_sin2 io) sin2ecos(2Z,-+2_)

-1/A sin 2 io sin2e cos(2N + 20)

+ sin 2 io(l - 1/2 sin2 io) sine cose cos(N +_')

+ iT sine cose cos(-_.+_') (B18)

The other term needed in order to express equation (37) as desired is (_)3.

Expressed in terms of the mean anomaly (M_=n_t + _ -_),

+ 3e_cos M + 912 e2 cos 2_M_

= (1/2+3/. 4 - sin2 io) sin2e

+ sinio (1- i12sin2 io + 312e_)sine cose cos(N+_)

- lli sin 2 i o sin2e cos (2N + 2 _) + 4sin e cos@ cos(N +_)

(BI9)

* (co._;..,J)
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+ 3/2 emsin2 O cos M.f. 1/2 sin2_) cos(2M,a+ 2_ + 2Y') (B20)

All terms which do not contribute to _--_or_-/have been neglected.

Employing a subscript m for Moon and s for Sun and recalling that io is zero
for the Sun, the following expression is written:

- i/& sin2 io sin2e cos(2N + 2p) L

I- "1

- 1/2LLcos(2MM+ 2_,Jm+_" 2_)+ cos(2N$ + 2"_s + 2_)J sin2_

+ iT(h+ i) cos(_+._.) sin4_ cose

+ 3/2(La m cos M_+ es cos Ms) sin2e (B21)

where K and L are defined on Page 59.

Using the substitutions defined on Page 62 and 63, equation (50) may now be
written.

U sin2e +
• = F l..JGl(gl cos_'-g sin _') sine cos O + H, sin2@S'_
Izz U_zo

+Y (50)
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n_DEX

The following is a list of some of the more important terms that are

used in this monograph. The page numbers show the location of the definition

of the term. Subsequent uses of terms are not referenced.

A Page

Altitude

Angle of Inclination

Argument of Perigee
Ascending Node

Astronomlcal Horizon

Astronomical Latitude

Azimuth

5

37
37

17
16

22

23

B

Barycentric 15

C

Celestial Equator
Celestial Horizon

Celestial Poles

Celestial Sphere

15
16

15
14

D

Declination

DescendlngNode

Dynamical Coordinate System

Dynamical Time

5

17
11

90

E

Earth Flattening
Earth Radius
Ecliptic
Ellipsoid

Ephemeris Time

Equatorial Radius
Euclidian 3-Space
Euler Transformation

II

ii
16

6

85

ll

4

57
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F

Flattening

Fortnightly Lunar Nutation
Free Eulerian Nutation

Fundamental Unit Vector

G

Galactic Circles

Galactic Poles

Galactic System
Geocentric

Geocentric - Geodetic Latitude Difference
Geocentric Latitude

Geoe cliptic Axes
Geodetic Horizon

Geodetic Latitude
Greenwich Meridian

Greenwich Siderial Time

Heliocentric

He lioeentric System

Hour Angle

H

Inertial Reference Frame

I

Jacobian

Julian Date

J

Lagrange 's Equation
Latitude

Linear

Linear Transformation
Line of Nodes

Local Astronomical Axes

Local Meridian

Longitude
Lunar Prime Meridian

Luni-Solar Precession

L

Page

6

56

55
4

16

16

33

15

7
2O

33
16

2O

17

83

15
56

5

3,36

42

88

58

5
4

44

17

27

17

5,37

17

19
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Mean Center Point (MCP)

Mean Equinox

Mean Equinox of Date

Mean Equinox of 1950.0
Meridian

Moon's Celestial Equator

Nutatlon, 19 Year Lunar
Nutation

Oblate Spheroid

Observational Coordinate System

Origin

Parallax

Perifocus

Planetary Precession
Position Coordinate

Prime Meridian

Principal Direction

Quasi-Inertlal

Radar Axes

Radar AE-ELAxes

Rectangular Cartesian

Reference Plane

Right Ascension
Rotation Matrix

Selenocentrlc

Selenocentrlc Equatorial System

Selenocentric Lunar Equatorial System

Selenographic Coordinate System
Semiannual Solar Nutatlon

Sidereal Time

Spheroid

Stanaard Equinox
Station Error
Summer Solstice

M

N

0

P

_4_e

18

19

19

19
16

16

56

19, 55

6

14

3,16

15
37

19,55
2

17

3,16

31

25

23

4

3

5
46

15
32

33
29
56

83
6

19
22

18
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Topocentric

Topocentrlc Equatorial Axes

Topocentrlc Horizontal Axes

Topodetic Axes
Total General Precession

True Anomaly
Transformation

True Equinox

Universal Time

Vernal Equinox

Winter Solstice

Zenith

T

U

V

W

Z

P_e

15
_5
27

23
55
36
42

19

84

18

18

16
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