1,132 research outputs found
Between Faith and Nation: The Complexities of Jewish Identity in Interwar Austria
During the period between the First and Second World Wars, the people of the newly established Austrian Republic faced many changes: the collapse of the Austro-Hungarian Empire and Habsburg Monarchy, economic hardships during and following the First World War, and the question of German ethnic nationalism and unification with Germany. The question of national identity was relevant to the entire Austrian population and Austrians had to make an important decision about their nationality: Austrian or German? For Austrian Jews, the dilemma was more complicated. Zionism promoted the idea of Jewish statehood and a solely Jewish identity. This thesis explores the diversity of the Jewish population and their answers to the national identity question in interwar Austria.
Using memoirs, questionnaires, and other personal writings from Austrian Jews, this thesis argues that the question of nationalism within the Austrian Jewish community was complicated, and a Jewish person’s experiences and background influenced their national identity. Jews who did not have an Orthodox upbringing tended to not align themselves with the Zionist Movement, and often favored an Austrian, German, or dual national identity rather than a solely Jewish one. Jews who grew up in an Orthodox household often favored either a dual or a solely Jewish national identity. The Austrian Jewish community was far from monolithic, and any telling of its interwar history must address this complexity
Intertidal habitat mapping for ecosystem goods and services: Tairua harbour
In January 2013, Waikato Regional Council (WRC) contracted the National Institute of Water and Atmospheric Research (NIWA), to develop rapid assessment techniques for mapping of intertidal habitats associated with the provision of ecosystem goods and services. Ecosystem goods and services are defined as ‘the direct and indirect benefits that humankind receives or values from natural or semi-natural habitats’ and include the provision of food and raw materials, waste treatment, processing and storage, disturbance prevention, sediment retention, water filtration and regulation, nutrient regulation, gas and climate regulation, habitat structure and cultural services such as spiritual heritage and leisure and recreation (Townsend et al. 2010). Assessment techniques were to be trialled and implemented for the intertidal area of the Tairua estuary with the view of providing:
• Descriptions of habitat types that may be linked to levels of ecosystem goods and services.
• Descriptions of the techniques involved in differentiating and mapping habitats, and an analysis of the precision and accuracy/validity of the methods.
This report documents the evolution of the methodology and a proof of concept using Tairua estuary as a test case to build a habitat map. The goal is to generate precursor maps that will facilitate the mapping of ecosystem goods and services in the near future
Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies
Understanding the factors influencing vaccination campaign effectiveness is vital in designing efficient disease elimination programmes. We investigated the importance of spatial heterogeneity in vaccination coverage and human-mediated dog movements for the elimination of endemic canine rabies by mass dog vaccination in Region VI of the Philippines (Western Visayas). Household survey data was used to parameterise a spatially-explicit rabies transmission model with realistic dog movement and vaccination coverage scenarios, assuming a basic reproduction number for rabies drawn from the literature. This showed that heterogeneous vaccination reduces elimination prospects relative to homogeneous vaccination at the same overall level. Had the three vaccination campaigns completed in Region VI in 2010–2012 been homogeneous, they would have eliminated rabies with high probability. However, given the observed heterogeneity, three further campaigns may be required to achieve elimination with probability 0.95. We recommend that heterogeneity be reduced in future campaigns through targeted efforts in low coverage areas, even at the expense of reduced coverage in previously high coverage areas. Reported human-mediated dog movements did not reduce elimination probability, so expending limited resources on restricting dog movements is unnecessary in this endemic setting. Enhanced surveillance will be necessary post-elimination, however, given the reintroduction risk from long-distance dog movements
Heterotrophy mitigates the response of the temperate coral
Anthropogenic increases in atmospheric carbon dioxide concentration have caused global average sea surface temperature (SST) to increase by approximately 0.11°C per decade between 1971 and 2010 - a trend that is projected to continue through the 21st century. A multitude of research studies have demonstrated that increased SSTs compromise the coral holobiont (cnidarian host and its symbiotic algae) by reducing both host calcification and symbiont density, among other variables. However, we still do not fully understand the role of heterotrophy in the response of the coral holobiont to elevated temperature, particularly for temperate corals. Here, we conducted a pair of independent experiments to investigate the influence of heterotrophy on the response of the temperate scleractinian coral Oculina arbuscula to thermal stress. Colonies of O. arbuscula from Radio Island, North Carolina, were exposed to four feeding treatments (zero, low, moderate, and high concentrations of newly hatched Artemia sp. nauplii) across two independent temperature experiments (average annual SST (20°C) and average summer temperature (28°C) for the interval 2005-2012) to quantify the effects of heterotrophy on coral skeletal growth and symbiont density. Results suggest that heterotrophy mitigated both reduced skeletal growth and decreased symbiont density observed for unfed corals reared at 28°C. This study highlights the importance of heterotrophy in maintaining coral holobiont fitness under thermal stress and has important implications for the interpretation of coral response to climate change
Major Histocompatibility Complex Class II Presentation of Cell-associated Antigen Is Mediated by CD8α+ Dendritic Cells In Vivo
Antigen-specific B cells express major histocompatibility complex class II and can present antigen directly to T cells. Adoptive transfer experiments using transgenic B and T cells demonstrated that antigen-specific B cells can also efficiently transfer antigen to another cell for presentation to T cells in vivo. To identify the antigen-presenting cell that receives antigens from B cells, a strategy was developed to follow the traffic of B cell–derived proteins in vivo. B cells were labeled with the fluorescent dye CFSE and loaded with antigen, before adoptive transfer into recipient mice. Populations of splenocytes from the recipient mice were later assayed for the presence of fluorescent proteins and for the ability to activate T cells. A small number of CD8α+CD4−CD11blo dendritic cells (DCs) contain proteins transferred from B cells and these DCs effectively present antigens derived from the B cells to T cells. The results suggest that CD8α+ DCs sample the cells and membranes in their environment for presentation to T cells circulating through the T cell zone. This function of CD8α+ DCs may be relevant to the priming of an immune response or the induction of T cell tolerance
Comparing methods of assessing dog rabies vaccination coverage in rural and urban communities in Tanzania
Rabies can be eliminated by achieving comprehensive coverage of 70% of domestic dogs during annual mass vaccination campaigns. Estimates of vaccination coverage are, therefore, required to evaluate and manage mass dog vaccination programs; however, there is no specific guidance for the most accurate and efficient methods for estimating coverage in different settings. Here, we compare post-vaccination transects, school-based surveys, and household surveys across 28 districts in southeast Tanzania and Pemba island covering rural, urban, coastal and inland settings, and a range of different livelihoods and religious backgrounds. These approaches were explored in detail in a single district in northwest Tanzania (Serengeti), where their performance was compared with a complete dog population census that also recorded dog vaccination status. Post-vaccination transects involved counting marked (vaccinated) and unmarked (unvaccinated) dogs immediately after campaigns in 2,155 villages (24,721 dogs counted). School-based surveys were administered to 8,587 primary school pupils each representing a unique household, in 119 randomly selected schools approximately 2 months after campaigns. Household surveys were conducted in 160 randomly selected villages (4,488 households) in July/August 2011. Costs to implement these coverage assessments were 66.12, and $155.70 per village for post-vaccination transects, school-based, and household surveys, respectively. Simulations were performed to assess the effect of sampling on the precision of coverage estimation. The sampling effort required to obtain reasonably precise estimates of coverage from household surveys is generally very high and probably prohibitively expensive for routine monitoring across large areas, particularly in communities with high human to dog ratios. School-based surveys partially overcame sampling constraints, however, were also costly to obtain reasonably precise estimates of coverage. Post-vaccination transects provided precise and timely estimates of community-level coverage that could be used to troubleshoot the performance of campaigns across large areas. However, transects typically overestimated coverage by around 10%, which therefore needs consideration when evaluating the impacts of campaigns. We discuss the advantages and disadvantages of these different methods and make recommendations for how vaccination campaigns can be better monitored and managed at different stages of rabies control and elimination programs
Influenza A Virus Infections in Land Birds, People’s Republic of China
Water birds are considered the reservoir for avian influenza viruses. We examined this assumption by sampling and real-time reverse transcription–PCR testing of 939 Asian land birds of 153 species. Influenza A infection was found, particularly among migratory species. Surveillance programs for monitoring spread of these viruses need to be redesigned
Impacts of Openness
This is the recording from the Impacts of Openness lightning talk session that was held on Friday, October 25, 2013, from 10:00 a.m. - noon in Watson Library, room 455 during the KU Libraries' celebration of Open Access Week.This event brings together several speakers from a variety of fields, each of whom will give a 10-minute presentation about the impact of openness in their work. More information about this event is available at http://openaccess.ku.edu/impacts-openness-lightning-talks-october-25
Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments
Imaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska. We tested whether aboveground vegetation chemistry and productivity, as detected from airborne sensors, predict soil properties, microbial processes and community composition. Imaging spectroscopy datawere used to map aboveground biomass, green vegetation cover, functional traits and phylogenetic-functional community composition of vegetation. We examined the relationships between the image-derived variables and soil carbon and nitrogen concentration, microbial community composition, biomass and extracellular enzyme activity, and soil processes, including net nitrogen mineralization. In the BioDIV experiment—which has low overall diversity and productivity despite high variation in each—belowground processes were driven mainly by variation in the amount of organic matter inputs to soils. As a consequence, soil respiration, microbial biomass and enzyme activity, and fungal and bacterial composition and diversity were significantly predicted by remotely sensed vegetation cover and biomass. In contrast, at Wood River—where plant diversity and productivity were consistently higher—belowground processes were driven mainly by variation in the quality of aboveground inputs to soils. Consequently, remotely sensed functional, chemical and phylogenetic composition of vegetation predicted belowground extracellular enzyme activity, microbial biomass, and net nitrogen mineralization rates but aboveground biomass (or cover) did not. The contrasting associations between the quantity (productivity) and quality (composition) of aboveground inputs with belowground soil attributes provide a basis for using imaging spectroscopy to understand belowground processes across productivity gradients in grassland systems. However, a mechanistic understanding of how above and belowground components interact among different ecosystems remains critical to extending these results broadly
Surveillance guidelines for disease elimination: a case study of canine rabies
Surveillance is a critical component of disease control programmes but is often poorly resourced, particularly in developing countries lacking good infrastructure and especially for zoonoses which require combined veterinary and medical capacity and collaboration. Here we examine how successful control, and ultimately disease elimination, depends on effective surveillance. We estimated that detection probabilities of <0.1 are broadly typical of rabies surveillance in endemic countries and areas without a history of rabies. Using outbreak simulation techniques we investigated how the probability of detection affects outbreak spread, and outcomes of response strategies such as time to control an outbreak, probability of elimination, and the certainty of declaring freedom from disease. Assuming realistically poor surveillance (probability of detection <0.1), we show that proactive mass dog vaccination is much more effective at controlling rabies and no more costly than campaigns that vaccinate in response to case detection. Control through proactive vaccination followed by 2 years of continuous monitoring and vaccination should be sufficient to guarantee elimination from an isolated area not subject to repeat introductions. We recommend that rabies control programmes ought to be able to maintain surveillance levels that detect at least 5% (and ideally 10%) of all cases to improve their prospects of eliminating rabies, and this can be achieved through greater intersectoral collaboration. Our approach illustrates how surveillance is critical for the control and elimination of diseases such as canine rabies and can provide minimum surveillance requirements and technical guidance for elimination programmes under a broad-range of circumstances
- …