685 research outputs found

    A study of the charged particle calibration requirements for the Deep Space Network

    Get PDF
    A study made of the Deep Space Network charged particle calibration requirements is discussed. The effects of charged particles on navigation and timing systems were reviewed and it was proposed that a system based upon the Global Positioning System satellites be used to measure the charged particle content of the ionosphere. The system would be required to measure the total electron content of the ionosphere to the order of 10 to the 16th power electron per square meter. Two types of systems were suggested as possible candidates for making these measurements

    A new class of trapped light filaments

    Get PDF
    New class light filament identified in Raman radiation of intense ruby laser bea

    High spectral and spatial resolution observations of the 12.28 micron emission from H2 in the Orion molecular cloud

    Get PDF
    The pure rotational S(2) line of molecular hydrogen at 12.28 microns was looked for in 44 positions in the Orion moleular cloud with 6 in. beams and 35 km/s spectral resolution; it was detected in 27 positions. Emission was observed over a velocity range of + or - 100 km/s. The lines are approximately symmetric, and have full widths at half maximum ranging from 100 km/s down to the resolution limit. The distribution of intensities and line shapes is largely consistent with that seen in the 2 micron hydrogen transitions. However, unexpectedly complex line profiles and point-to-point variations in linear shapes appear, particularly in the region near IRc9

    The 158 micron (CII) mapping of galaxies: Probing the atomic medium

    Get PDF
    Using the MPE/UCB Far-infrared Imaging Fabry-Perot Interferometer (FIFI) on the Kuiper Airborne Observatory (KAO), we have made large scale maps of (CII) in the spiral galaxies NGC 6946, NGC 891, M83 and the peculiar elliptical Cen A, thus allowing for the first time, detailed studies of the spatial distribution of the FIR line emission in external galaxies. We find that the (CII) emission comes from a mixture of components of interstellar gas. The brightest emission is associated with the nuclear regions, a second component traces the spiral arms as seen in the nearly face on spiral galaxies NGC 6946 and M83 and the largest star forming/H2 regions contained within them, and another extended component of low brightness can be detected in all of the galaxies far from the nucleus, beyond the extent of CO emission

    Velocity-selective resonance dips in the probe absorption spectra of Rb D2 transitions induced by a pump laser

    Full text link
    We report experimental observation of velocity-selective resonances in the Doppler-broadened probe absorption spectra of 85Rb and 87Rb D2 transitions in the presence of a strong copropagating pump laser locked to a frequency within the Doppler profile of the transition. The set of three dips having the separation of allowed hyperfine transitions can be moved along the Doppler profile by tuning the pump laser frequency indicating a resonance between the pump laser frequency and the velocity shifted probe laser frequency.Comment: 7 pages, 4 figure

    Water vapor at a translational temperature of one kelvin

    Full text link
    We report the creation of a confined slow beam of heavy-water (D2O) molecules with a translational temperature around 1 kelvin. This is achieved by filtering slow D2O from a thermal ensemble with inhomogeneous static electric fields exploiting the quadratic Stark shift of D2O. All previous demonstrations of electric field manipulation of cold dipolar molecules rely on a predominantly linear Stark shift. Further, on the basis of elementary molecular properties and our filtering technique we argue that our D2O beam contains molecules in only a few ro-vibrational states.Comment: 4 pages, 4 figures, 1 tabl

    Adiabatic orientation of rotating dipole molecules in an external field

    Get PDF
    The induced polarization of a beam of polar clusters or molecules passing through an electric or magnetic field region differs from the textbook Langevin-Debye susceptibility. This distinction, which is important for the interpretation of deflection and focusing experiments, arises because instead of acquiring thermal equilibrium in the field region, the beam ensemble typically enters the field adiabatically, i.e., with a previously fixed distribution of rotational states. We discuss the orientation of rigid symmetric-top systems with a body-fixed electric or magnetic dipole moment. The analytical expression for their "adiabatic-entry" orientation is elucidated and compared with exact numerical results for a range of parameters. The differences between the polarization of thermodynamic and "adiabatic-entry" ensembles, of prolate and oblate tops, and of symmetric-top and linear rotators are illustrated and identified.Comment: 18 pages, 4 figure

    State-to-State Differential and Relative Integral Cross Sections for Rotationally Inelastic Scattering of H2O by Hydrogen

    Get PDF
    State-to-state differential cross sections (DCSs) for rotationally inelastic scattering of H2O by H2 have been measured at 71.2 meV (574 cm-1) and 44.8 meV (361 cm-1) collision energy using crossed molecular beams combined with velocity map imaging. A molecular beam containing variable compositions of the (J = 0, 1, 2) rotational states of hydrogen collides with a molecular beam of argon seeded with water vapor that is cooled by supersonic expansion to its lowest para or ortho rotational levels (JKaKc= 000 and 101, respectively). Angular speed distributions of fully specified rotationally excited final states are obtained using velocity map imaging. Relative integral cross sections are obtained by integrating the DCSs taken with the same experimental conditions. Experimental state-specific DCSs are compared with predictions from fully quantum scattering calculations on the most complete H2O-H2 potential energy surface. Comparison of relative total cross sections and state-specific DCSs show excellent agreement with theory in almost all detailsComment: 46 page

    Enabling Future Science and Human Exploration with NASA's Next Generation near Earth and Deep Space Communications and Navigation Architecture

    Get PDF
    The National Aeronautics and Space Administration (NASA) is studying alternatives for the United States space communications architecture through the 2040 timeframe. This architecture provides communication and navigation services to both human exploration and science missions throughout the solar system. Several of NASA's key space assets are approaching their end of design life and major systems are in need of replacement. The changes envisioned in the relay satellite architecture and capabilities around both Earth and Mars are significant undertakings and occur only once or twice each generation, and therefore is referred to as NASA's next generation space communications architecture. NASA's next generation architecture will benefit from technology and services developed over recent years. These innovations will provide missions with new operations concepts, increased performance, and new business and operating models. Advancements in optical communications will enable high-speed data channels and the use of new and more complex science instruments. Modern multiple beam/multiple access technologies such as those employed on commercial high throughput satellites will enable enhanced capabilities for on-demand service, and with new protocols will help provide Internet-like connectivity for cooperative spacecraft to improve data return and coordinate joint mission objectives. On-board processing with autonomous and cognitive networking will play larger roles to help manage system complexity. Spacecraft and ground systems will coordinate among themselves to establish communications, negotiate link connectivity, and learn to share spectrum to optimize resource allocation. Spacecraft will autonomously navigate, plan trajectories, and handle off-nominal events. NASA intends to leverage the ever-expanding capabilities of the satellite communications industry and foster its continued growth. NASA's technology development will complement and extend commercial capabilities to meet unique space environment requirements and to provide capabilities that are beyond the commercial marketplace. The progress of the communications industry, including the emerging global space internet segment and its planned constellations of 100's of satellites offer additional opportunities for new capability and mission concepts. The opportunities and challenges of a future space architecture require an optimal solution encompassing a global perspective. The concepts and technologies intentionally define an architecture that applies not only to NASA, but to other U.S. government agencies, international space and government agencies, and domestic and international industries to advance the openness, interoperability, and affordability of space communications. Cooperation among the worlds space agencies, their capabilities, standards, operations, and interoperability are key to advancing humankind's understand of the universe and extending human presence into the solar system
    corecore