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The ex i s t ence  of self-trapped f i laments  of l i g h t  i n  i n t e n s e  

laser b e a q  and t h e i r  inf luence on s t imulated Raman r a d i a t i o n  

have a l r eady  been discussed. ” 29  Furthermore, f i laments  of 

diameters about 50pwhich are self-focussed by t h e  Kerr e f f e c t  

have been i d e n t i f i e d  and most of t h e i r  p r o p e r t i e s  are found t o  

agree with expectat ions.  3’ 4’ However, i t  is  shown h e r e  t h a t  

t h e  s t imu la t ed  Raman r a d i a t i o n  i s  c h a r a c t e r i s t i c a l l y  a s soc ia t ed  

with a second class of f i laments  of much smaller diamter, of 

’ d i f f e r e n t  threshold p rope r t i e s ,  and with c h a r a c t e r i s t i c s  which 

a f f e c t  s u b s t a n t i a l l y  t h e  na tu re  of Stokes and anti-Stokes 

r a d i a t i o n .  

A t y p i c a l  photomicrograph of l i g h t  produced by a Q-switched 

ruby laser j u s t  as i t  emerges from the  end of a 50 c m  ce l l  of 

carbon d i s u l f i d e  i s  shown i n  Figure la.  A beam from a 0.5 mm 

pinhole  such as t h a t  used i n  reference 4 provided t h e  e x c i t i n g  

l i g h t .  

from the  pinhole form the  background l i g h t  i n  t h e  f i g u r e .  

b r i g h t  c e n t r a l  region is  caused by se l f - t rapping  due t o  t h e  K e r r  

e f f e c t ,  as observed previously.  I n  add i t ion ,  superimposed on t h i s  
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concentrated f i lament  are many b r igh t  f i laments  of laser l i g h t  

of much smaller diameter, about 5 microns. W e  s h a l l  r e f e r  t o  

the  former as large-scale  t rapping and t o  the  l a t te r  as small- 

s c a l e  trapping. 

The Stokes l i g h t ,  a t y p i c a l  photomicrograph of which is  

shown i n  Figure l b ,  occurs i n  small f i laments  of about the  same 

s i z e  as the  small-scale l a s e r  f i laments .  By reZlec t ions  from a 

p a r t i a l l y  r e f l e c t i n g  mirror  i n  the  laser beam i n s i d e  a l i qu id  cell,  

these  small-scale f i laments  have been shown t o  persist for many 

cent imeters .  The technique was similar t o  t h a t  used brevious ly  

f o r  large-scale  t r app ingY4  but the  mir ror  cons is ted  of a d i e l ec -  

t r i c a l l y  coated s i x  micron th ick  mylar f i l m  r a t h e r  than a th icker  

microscope s l i d e  i n  order  no t  t o  destroy the  f i laments  by allowing 

d i f f r a c t i o n  i n s i d e  the  g l a s s  s l i d e .  Cha rac t e r i s t i ca l ly ,  t he  

many f i laments  of Stokes r ad ia t ion  which occurred a t  19 c m  i n s i d e  

t h e  c e l l  p e r s i s t e d  t o  the end of t h e  25 c m  c e l l  i n  the  same 

relative pos i t i ons .  

Photomicrographs of the beam as i t  emerged from cells of 

carbon d i s u l f i d e  of varying lengths  show the  following charac te r -  

i s t i c s .  A t  four  centimeters path length  no focussing e f f e c t s  o r  

s t imula ted  Raman rad ia t ion  were observed i n  a d i f f rac t ion- l imi ted  

beam of 200 kwatts power and 500 microns diameter. 

focussing d i s t ance  w a s  approximately s ix  cent imeters .  I n  cells 

of t h i s  length the  concentrat ion of l i g h t  i n t o  large-scale  

t rapping is very much i n  evidence. 

near  se l f - focus  a s  we  were ab le  t o  obta in  and demonstrates a 

c e n t r a l  b r i g h t  f i lament  about f i v e  microns i n  s i z e .  

The s e l f -  
6 

Figure 2a shows t h e  beam as 

Immediately 
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upon the  onset of large-scale  trapping, b r i g h t  f i laments  of 

Stokes r s d i a t i o n  approximately f i v e  microns i n  s i z e  appeared. 

Associated with such f i laments  w a s  a marked decrease i n  the  

i n t e n s i t y  of laser l i g h t  a t  the pos i t ion  of t hese  f i laments .  

This decrease can be l a r g e r  than an order of magnitude and shows 

up as dark spo t s  t he  order of f i v e  microns i n  s i z e  wi th in  the  

large-scale  self-focussed region, as shown i n  Figure 2b. 

path length,  t he  laser beam w a s  found t o  conta in  b r i g h t  f i laments  

r a t h e r  than dark spots ,  which occurred i n  the  same pos i t i ons  as 

t h e  b r i g h t  Stokes f i laments  and w e r e  a l s o  approximately f i v e  

microns i n  s i z e .  Bright f i laments  about t he  same s i z e  w e r e  

observed a t  twenty-five and f i f t y  cent imeters  cel l  length ( c f .  

Figure 1). By one meter cel l  length these f i laments  no longer 

appeared prominently. 

i n  t h e  other  Raman-active l i q u i d s  w e  invest igated:  

bromobenzene and toluene. 

By 10 c m  

S i m i l a r  small-scale f i laments  w e r e  observed 

nitrobenzene, 

While near  t h e  large-scale focussing d i s t ance  the  Stokes 

i n t e n s i t y  increased very rapidly,  i n  succeeding paths  up t o  f i f t y  

cent imeters  i t  increased i n  i n t e n s i t y  by less than two orders  of 

magnitude. Near the  focussing d is tance  large-scale  trapping w a s  

very r a r e l y  observed without i n t ense  Stokes f i laments  and t h e i r  

assoc ia ted  d a r k . l a s e r  spots .  Hence t h e  region of high gain f o r  

t h e  Stokes l i g h t  must be l e s s  than a few m i l l i m e t e r s ,  with a 

gain as l a rge  as about e30 p e r  centimeter.  This rap id  conversion 

weakens the laser i n t e n s i t y  wi th in  the f i r s t  few m i l l i m e t e r s ,  

producing the  observed dark spots .  The majori ty  of anti-Stokes 
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l i g h t  rad ia ted  i n  cones w a s  observed t o  be emit ted i n  t h i s  high- 

p i n _  region. 

The thresholds  f o r  s t imulated Raman emission and small- 

scale t rapping appear t o  be the  same as f o r  large-scale  focussing. 

Near t h e  self-focussing dis tance,  s t imulated Raman f i laments  were 

always observed i n  conjunction with large-scale focussing. Tran- 

s i e n t  self-focussing may occur a t  power l e v e l s  lower than those 

r e s u l t i n g  i n  s teady-state  trapping. 

f i laments  w e r e  formed which remained trapped f o r  long d is tances  

even when the  large-scale focussing w a s  no longer  apparent.  

t he re  w e r e  no small-scale f i laments  a t  power levels below those 

necessary f o r  self-focussing,  a s m a l l  increase  of i nc iden t  power 

above threshold l ed  t o  many f i laments ,  i n  s t r i k i n g  con t r a s t  t o  

t he  a x i a l l y  symmetric large-scale i n t e n s i t y  d i s t r i b u t i o n .  

I n  t h i s  case small-scale 

While 

The t o t a l  energy t ransmit ted through each small-scale f i l a -  

ment w a s  measured photographically a t  t he  end of twenty-five 

cent imeters  of l i q u i d  and found t o  be a few ergs .  Both the  laser 

and Stokes f i laments  appear t o  last  approximately one nanosecond 

r a t h e r  than the f u l l  30 nanoseconds durat ion of t he  laser pulse .  

Thus the  t o t a l  power i n  each f i lament  w a s  few ten ths  t o  one 

ki lowatt ,  which is an order  of magnitude o r  more below t h a t  

required by theory f o r  e i t h e r  Kerr o r  e l e c t r o s t r i c t i v e  e f f e c t s  t o  

produce trapping. The change i n  index of r e f r a c t i o n  required t o  

t r a p  l i g h t  i n  a f i lament  of diameter d is  given by A n  = - n py. 
For the  f i v e  micron fi laments i n  carbon d i s u l f i d e ,  t h i s  gives  an 

order  of magnitude o r  more l a rge r  than can be obtained from known 

n o n l i n e a r i t i e s  due t o  Kerr or  e l e c t r o s t r i c t i v e  e f f e c t s  i n  the  

o p t i c a l  f i e l d s  which must be  present .  

2, 8 

2 nd 
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The c lose  r e l a t i o n  of small-scale t rapping t o  the s t imulated 

Raman e f f e c t  suggests an increase i n  the  r e f r a c t i v e  index due t o  

molecular exc i t a t ion .  This CZIZ zrise from the  increased molecular 

p o l a r i z a b i l i t y  of exc i ted  v i b r a t i o n a l  states. 

numbers are not  known, the  magnitude of t h i s  e f f e c t  can be esti- 

mated from the  rotat ion-vibrat ion constants .  These show t h a t  

molecules t y p i c a l l y  change moment of i n e r t i a  by a good f r a c t i o n  

of one p e r  cen t  due t o  v ib ra t iona l  exc i t a t ion ,  and hence t h e i r  

average dimensions expand by t h i s  amount. Since the  p o l a r i z a b i l i t y  

i s  roughly propor t iona l  t o  the cube of t he  molecular dimension, 

the  molecular expansion due t o  e x c i t a t i o n  would then increase  t h e  

index of r e f r a c t i o n  of the  mater ia l  by an amount comparable with 

one per  cent  i f  a l l  t he  molecules are exci ted.  

about ten  per  cent  of the  molecules w i l l  lead t o  r e f r a c t i v e  

index changes cons is ten t  w i t h  those observed i n  small-scale 

trapping. 

of t he  required degree of exc i t a t ion  appears somewhat marginal 

from the present  experimental numbers, even when one takes  i n t o  

cons idera t ion  t h a t  a s i n g l e  laser photon may be completely converted 

i n t o  v i b r a t i o n a l  energy by successive Stokes emission and subse- 

quent d i r e c t  i n f r a red  absorption, and t h a t  the t o t a l  energy 

absorbed i n  the  fi lament may be g rea t e r  than t h a t  which is 

t ransmit ted.  

While accura te  

Exci ta t ion  of 

Except i n  the  region of very high Stokes gain,  production 

None of t he  o ther  mechanisms w e  have inves t iga ted  appear t o  

give a l a r g e  enough r e f r a c t i v e  index change i n  the  presence of 

t h e  experimental f i e l d  s t rengths .  Higher order t e r m s  i n  t he  
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simple K e r r  o r  e l e c t r o s t r i c t i v e  e f f e c t s  are expected t o  be 

smll and of t he  wrong s ign  t o  produce an increased change of 

index of r e f r a c t i o n  of t he  observed type. 

K e r r  and e l e c t r o s t r i c t i v e  e f f e c t s  could a t  least have the  

co r rec t  s ign ,  bu t  i t  appears much too small t o  be e f f e c t i v e  i n  

these cases. 

such as c r y s t a l l i z a t i o n  induced by molecular alignment and 

pressure of t he  f i e l d ,  could occur. 

po lar iza t ion ,  however, i s  very much less than kT, and we have 

found experimentally t h a t  t he  p rope r t i e s  of these  f i laments  i n  

mixtures are a continuous funct ion of r e l a t i v e  concentration, 

which ind ica t e s  t h a t  no phase t r a n s i t i o n  i s  present .  

It i s  no t  d i f f i c u l t  t o  understand the  s h o r t  t i m e  dura t ion  

A cross-term betweeii 

One might wonder whether some change i n  phase, 

The energy i n  the molecular 

of t he  f i laments .  The v ib ra t iona l  energy given t o  the  molecules 

through the  s t imulated Raman e f f e c t  w i l l  be converted a f t e r  a 

c h a r a c t e r i s t i c  re laxa t ion  t i m e  i n t o  t r a n s l a t i o n a l  energy, causing 

the  f i lament  t o  hea t  up and expand. Expansion w i l l  decrease the  

r e f r a c t i v e  index and destroy the  trapping. 
terist ic t i m e  f o r  v i b r a t i o n a l  r e l axa t ion  t o  t r a n s l a t i o n a l  energy 

is 2 x sec.9 The c h a r a c t e r i s t i c  t i m e  f o r  des t ruc t ion  of a 

f i lament  by expansion i s  the t i m e  required f o r  sound t o  move a 

s i zeab le  por t ion  of t he  fi lament diameter, a l s o  approximately 

one nanosecond. Thus the  durat ion of small-scale t rapping f o r  

only a few nanoseconds is not su rp r i s ing .  Furthermore, i t  is  

clear t h a t  t he  decrease of r e f r a c t i v e  index due t o  material 

expansion would keep rad ia t ion  out  of t h i s  region once the  l i g h t  

f i lament  has  been destroyed. Thus the  appearance of dark s p o t s  

i n  the laser d i s t r i b u t i o n  near t h e  region of high Raman gain 

may p e r s i s t  t he  e n t i r e  durat ion of the  laser pulse  even when 

the  Stokes r ad ia t ion  l a s t s  only one nanosecond. 

I n  CS2 t he  charac- 
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The cause of the  low Raman gain i n  the  lat ter por t ions  of 

long cells has  n o t  been wwrked out i n  d e t a i l .  While s a tu ra t ion  

of t h e  molecular population d i f fe rence  i s  an  a t t r a c t i v e  m,echn.ism, 

t h e  present  experimental numbers do not  appear t o  allow a s u f f i c i e n t  

f r a c t i o n  of t he  molecules t o  be exc i ted .  

of t he  presence of many orders  of Stokes r ad ia t ion  is c e r t a i n l y  

a cont r ibu t ing  f ac to r ,  bu t  does no t  adequately decrease the  

conversion of laser l i g h t  s ince  the  h ighes t  order  Stokes 

r ad ia t ion  i s  absorbed d i r e c t l y  by the  l i q u i d  and provides a rap id  

lo s s .  Dispersion i n  the  r e f r a c t i v e  index w i l l  c ause - fu r the r  ga in  

decrease i f  t he  exc i t i ng  l i g h t  is  broadened i n  frequency. 

Decrease i n  gain because 

The ex is tence  of small-scale t rapping described here  should 

have a considerable  e f f e c t  on t h e  c h a r a c t e r i s t i c s  of s t imulated 

r a d i a t i o n  through t h e  following new considerat ions:  

(a)  The small diameter of the  f i laments  changes the  phase 

ve loc i ty  of l i g h t  waves by wave-guide e f f e c t s  and 

the  angles of anti-Stokes rad ia t ion .  10 

(b) The l a rge  change i n  index of r e f r a c t i o n  
10 phase v e l o c i t i e s  and r ad ia t ion  angles.  

hence modifies 

a l s o  modifies 

(c)  The l a r g e  change i n  index i s  probably accompanied by 

an  appreciable  change i n  acous t ic  v e l o c i t i e s .  

(d) The index change i n  the  f i laments  produces more powerful 

modulation e f f e c t s  and smearing of r a d i a t i o n  frequencies than 

what is  ca l cu la t ed  assuming Kerr e f f e c t s  alone. 11 

(e)  The rate of change of index of r e f r a c t i o n  and hence of 

phase of the  trapped rad ia t ion  assoc ia ted  with rap id  formation 
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and decay of the small-scale filaments can contribute importantly 

to frequency smearing. 10 

( f )  Variations in molecular saturation aiiii fr: i d e x  of 

refraction along the filament can give different relative 

intensities of Stokes radiation in  the backward and forward 

directions, as is sometimes observed. 
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Figure 1 

(a) 
CS, and exh ib i t i ng  l a r g e  and small-scale trapping.  

t i o n  is  30x. The b r i g h t  cencra i  poztion Is the  large-scale  

trapped beam; the  many small b r i g h t  f i l aments  demonstrate t h e  

small-scale t rapping.  

t he  untrapped beam d i f f r a c t i n g  from the  i n i t i a l  pinhole.  

Image of a ruby laser beam emerging from a 50 c m  ce l l  of 

Magnifica- - 

The broad d i sk  and r i n g  of l i g h t  are 

(b) Stokes r a d i a t i o n  under condi t ions s i m i l a r  t o  ( a ) .  Magnifi- 

ca t ion  SOX. 

Figure 2 

2 Image of ruby laser beam emerging from a 6 c m  ce l l  of CS 

under magnif icat ion a f a c t o r  of 40x. (a)  Very nea r  se l f - focus  

(b) S l i g h t l y  h igher  power level, i.e., se l f - focus  occurred j u s t  

before  t h e  end of t h e  cell. 
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