1,396 research outputs found
Research and development of high temperature resistant polymeric film forming material final summary report, 1 mar. 1961 - 17 apr. 1962
Preparation of poly-organometallosiloxane polymers from reactions between bis-dialkylamino metal derivatives and silanediol
A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)
We present the results of a Nobeyama 45-m water maser and ammonia survey of
all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive
young stellar objects (MYSOs) identified based on their extended 4.5 micron
emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and
detect emission towards 97%, 63%, and 46% of our sample, respectively (median
rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The
derived water maser and clump-scale gas properties are consistent with the
identification of EGOs as young MYSOs. To explore the degree of variation among
EGOs, we analyze subsamples defined based on MIR properties or maser
associations. Water masers and warm dense gas, as indicated by emission in the
higher-excitation ammonia transitions, are most frequently detected towards
EGOs also associated with both Class I and II methanol masers. 95% (81%) of
such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of
EGOs without either methanol maser type. As populations, EGOs associated with
Class I and/or II methanol masers have significantly higher ammonia linewidths,
column densities, and kinetic temperatures than EGOs undetected in methanol
maser surveys. However, we find no evidence for statistically significant
differences in water maser properties (such as maser luminosity) among any EGO
subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane
Survey, we find no correlation between isotropic water maser luminosity and
clump number density. Water maser luminosity is weakly correlated with clump
(gas) temperature and clump mass.Comment: Astrophysical Journal, accepted. Emulateapj, 24 pages including 24
figures, plus 9 tables (including full content of online-only tables
On the upstream mobility scheme for two-phase flow in porous media
When neglecting capillarity, two-phase incompressible flow in porous media is
modelled as a scalar nonlinear hyperbolic conservation law. A change in the
rock type results in a change of the flux function. Discretizing in
one-dimensional with a finite volume method, we investigate two numerical
fluxes, an extension of the Godunov flux and the upstream mobility flux, the
latter being widely used in hydrogeology and petroleum engineering. Then, in
the case of a changing rock type, one can give examples when the upstream
mobility flux does not give the right answer.Comment: A preprint to be published in Computational Geoscience
Polychromatic solitons in a quadratic medium
We introduce the simplest model to describe parametric interactions in a
quadratically nonlinear optical medium with the fundamental harmonic containing
two components with (slightly) different carrier frequencies [which is a direct
analog of wavelength-division multiplexed (WDM) models, well known in media
with cubic nonlinearity]. The model takes a closed form with three different
second-harmonic components, and it is formulated in the spatial domain. We
demonstrate that the model supports both polychromatic solitons (PCSs), with
all the components present in them, and two types of mutually orthogonal simple
solitons, both types being stable in a broad parametric region. An essential
peculiarity of PCS is that its power is much smaller than that of a simple
(usual) soliton (taken at the same values of control parameters), which may be
an advantage for experimental generation of PCSs. Collisions between the
orthogonal simple solitons are simulated in detail, leading to the conclusion
that the collisions are strongly inelastic, converting the simple solitons into
polychromatic ones, and generating one or two additional PCSs. A collision
velocity at which the inelastic effects are strongest is identified, and it is
demonstrated that the collision may be used as a basis to design a simple
all-optical XOR logic gate.Comment: 9 pages, 8 figures, accepted to Phys. Rev.
Hepatitis C virus exploits cyclophilin A to evade PKR
Counteracting innate immunity is essential for successful viral replication. Host cyclophilins (Cyps) have been implicated in viral evasion of host antiviral responses, although the mechanisms are still unclear. Here, we show that hepatitis C virus (HCV) co-opts the host protein CypA to aid evasion of antiviral responses dependent on the effector protein kinase R (PKR). Pharmacological inhibition of CypA rescues PKR from antagonism by HCV NS5A, leading to activation of an interferon regulatory factor-1 (IRF1)-driven cell intrinsic antiviral program that inhibits viral replication. These findings further the understanding of the complexity of Cyp-virus interactions, provide mechanistic insight into the remarkably broad antiviral spectrum of Cyp inhibitors, and uncover novel aspects of PKR activity and regulation. Collectively, our study identifies a novel antiviral mechanism that harnesses cellular antiviral immunity to suppress viral replication
Rotating optical soliton clusters
We introduce the concept of soliton clusters -- multi-soliton bound states in
a homogeneous bulk optical medium, and reveal a key physical mechanism for
their stabilization associated with a staircase-like phase distribution that
induces a net angular momentum and leads to cluster rotation. The ringlike
soliton clusters provide a nontrivial generalization of the concepts of
two-soliton spiraling, optical vortex solitons, and necklace-type optical
beams.Comment: 4 pages, 5 figure
A Water Maser and NH_3 Survey of GLIMPSE Extended Green Objects
We present the results of a Nobeyama 45 m H_(2)O maser and NH_3 survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 μm emission. We observed the NH3(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms ~ 50 mK). The H_(2)O maser detection rate is 68% (median rms ~ 0.11 Jy). The derived H_(2)O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H_(2)O masers and warm dense gas, as indicated by emission in the higher-excitation NH_3 transitions, are most frequently detected toward EGOs also associated with both Class I and II CH_(3)OH masers. Ninety-five percent (81%) of such EGOs are detected in H_(2)O (NH_(3)(3,3)), compared to only 33% (7%) of EGOs without either CH_(3)OH maser type. As populations, EGOs associated with Class I and/or II CH3OH masers have significantly higher NH_3 line widths, column densities, and kinetic temperatures than EGOs undetected in CH_(3)OH maser surveys. However, we find no evidence for statistically significant differences in H_(2)O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H_(2)O maser luminosity and clump number density. H_(2)O maser luminosity is weakly correlated with clump (gas) temperature and clump mass
Recommended from our members
Sample preparation: a crucial factor for the analytical performance of rationally designed MALDI matrices
Evidence is presented that the performance of
the rationally designed MALDI matrix 4-chloro-α-cyanocinnamic acid (ClCCA) in comparison to its well-established predecessor α-cyano-4-hydroxycinnamic acid (CHCA) is significantly dependent on the sample preparation, such as the choice of the target plate. In this context, it becomes clear that any rational designs of MALDI matrices and their successful employment have to consider a larger set of physicochemical parameters, including sample crystallization and morphology/topology, in addition to parameters of basic (solution and/or gas-phase) chemistry
Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust
We present the mass excesses of 59-64Cr, obtained from recent time-of-flight
nuclear mass measurements at the National Superconducting Cyclotron Laboratory
at Michigan State University. The mass of 64Cr is determined for the first
time, with an atomic mass excess of -33.48(44) MeV. We find a significantly
different two-neutron separation energy S2n trend for neutron-rich isotopes of
chromium, removing the previously observed enhancement in binding at N=38.
Additionally, we extend the S2n trend for chromium to N=40, revealing behavior
consistent with the previously identified island of inversion in this region.
We compare our results to state-of-the-art shell-model calculations performed
with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell,
including the g9/2 and d5/2 orbits for the neutron valence space. We employ our
result for the mass of 64Cr in accreted neutron star crust network calculations
and find a reduction in the strength and depth of electron-capture heating from
the A=64 isobaric chain, resulting in a cooler than expected accreted neutron
star crust. This reduced heating is found to be due to the >1-MeV reduction in
binding for 64Cr with respect to values from commonly used global mass models.Comment: Accepted to Physical Review
- …