research

A Water Maser and NH_3 Survey of GLIMPSE Extended Green Objects

Abstract

We present the results of a Nobeyama 45 m H_(2)O maser and NH_3 survey of all 94 northern GLIMPSE extended green objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 μm emission. We observed the NH3(1,1), (2,2), and (3,3) inversion lines, and detected emission toward 97%, 63%, and 46% of our sample, respectively (median rms ~ 50 mK). The H_(2)O maser detection rate is 68% (median rms ~ 0.11 Jy). The derived H_(2)O maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on mid-infrared (MIR) properties or maser associations. H_(2)O masers and warm dense gas, as indicated by emission in the higher-excitation NH_3 transitions, are most frequently detected toward EGOs also associated with both Class I and II CH_(3)OH masers. Ninety-five percent (81%) of such EGOs are detected in H_(2)O (NH_(3)(3,3)), compared to only 33% (7%) of EGOs without either CH_(3)OH maser type. As populations, EGOs associated with Class I and/or II CH3OH masers have significantly higher NH_3 line widths, column densities, and kinetic temperatures than EGOs undetected in CH_(3)OH maser surveys. However, we find no evidence for statistically significant differences in H_(2)O maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic H_(2)O maser luminosity and clump number density. H_(2)O maser luminosity is weakly correlated with clump (gas) temperature and clump mass

    Similar works