334 research outputs found

    Amino acid sequence of rat liver cathepsin L

    Get PDF
    AbstractThe complete amino acid sequences of the heavy and light chains of rat liver cathepsin L (EC 3.4.22.15) were determined at the protein level. The heavy and light chains consisted of 175 and 44 amino acid residues, respectively, and their Mr values without glycosyl groups calculated from these sequences were 18941 and 5056, respectively. The amino acid sequence was also determined from the N-terminal sequences of the heavy and light chains, and the sequences of cleavage fragments of the heavy chain with lysylendopeptidase and cyanogen bromide. The fragments were aligned by comparison with the amino acid sequence deduced from the sequence of cDNA of rat preprocathepsin L. The sequence of rat liver cathepsin L determined at the protein level was identical with that deduced from the cDNA sequence except that in the heavy chain, residues 176–177 (Asp-Ser) were not present at the C-terminus and alanine was replaced by proline at residue 125. Asn-108 in the heavy chain is modified with carbohydrate

    Seasonal and regional differences in lighting conditions and their influence on melatonin secretion

    Get PDF
    The paper presents essential results of multidisciplinary research dealing with differences in lighting conditions (natural and/or artificial) and their possible influence on melatonin secretion studied in Fukuoka (Japan) and in Warszawa (Poland). Several characteristics of lighting were considered (intensity of global 0.4-3.0 μm, visible 0.4 0.76 μm solar radiation, illuminance (lux), peak irradiance (μW∙cm−2∙nm−1), Color Corresponded Temperature (CCT, K) and peak wave length (nm)). Diurnal cycle of melatonin secretion was examined at volunteers (Poland – 15, Japan – 18), young male and female (21–33 years). Saliva samples were collected at 3h intervals, beginning at 10:00h on Thursday with subsequent sampling times at 13:00, 16:00, 19:00, 22:00 and at 01:00, 04:00 07:00h on Friday. Melatonin concentration (MC) was measured by commercials ELISA kit tests

    Enzymes and inhibitors in airway that regulate infection of influenza virus

    Get PDF
    It has been proposed that the pathogenicity of the influenza and Sendai virus is primarily determined by host cellular proteases that activate viral infectivity. We isolated trypsin-type serin proteases from rat lungs, candidates for the processing proteases of viral envelope glycoproteins, such as tryptase Clara localized in the Clara cells of the bronchial epithelium and mini-plasmin. These enzymes specifically cleave the precursor of fusion glycoprotein HA of influenza virus at Arg325, and the Fo of Sendai virus at Arg116 in the consensus cleavage motif, Gln(Glu)-X-Arg, resulting in the induction of infectivity of these viruses. Proteolytic activation of viruses by these enzymes occurs extracellularly, probably on the surface and/or in the lumen of the respiratory tract. On the other hand, we isolated two compounds from human bronchial lavage, which inhibitor the activity of tryptase Clara. One was a mucus protease inhibitor and the other was a pulmonary surfactant. These compounds inhibited multiple cycles of virus replication in vitro and in vivo, but did not themselves affect the hemagglutination and the infectivity of the virus. Administration of these compounds in the airway may be useful for preventing and treating infection with influenza virus and Sendai virus

    Structure-based development of specific inhibitors for individual cathepsins and their medical applications

    Get PDF
    Specific inhibitors for individual cathepsins have been developed based on their tertiary structures of X-ray crystallography. Cathepsin B-specific inhibitors, CA-074 and CA-030, and cathepsin L specific inhibitors, CLIK-148 and CLIK-195, were designed as the epoxysuccinate derivatives. Cathepsin S inhibitor, CLIK-060, and cathepsin K inhibitor, CLIK-166, were synthesized. These inhibitors can use in vitro and also in vivo, and show no toxicity for experimental animals by the amounts used as the cathepsin inhibitor

    Loss of Niemann-Pick C1 or C2 Protein Results in Similar Biochemical Changes Suggesting That These Proteins Function in a Common Lysosomal Pathway

    Get PDF
    Niemann-Pick Type C (NPC) disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely

    Cholesterol Crystals Activate the NLRP3 Inflammasome in Human Macrophages: A Novel Link between Cholesterol Metabolism and Inflammation

    Get PDF
    Chronic inflammation of the arterial wall is a key element in the pathogenesis of atherosclerosis, yet the factors that trigger and sustain the inflammation remain elusive. Inflammasomes are cytoplasmic caspase-1-activating protein complexes that promote maturation and secretion of the proinflammatory cytokines interleukin(IL)-1beta and IL-18. The most intensively studied inflammasome, NLRP3 inflammasome, is activated by diverse substances, including crystalline and particulate materials. As cholesterol crystals are abundant in atherosclerotic lesions, and IL-1beta has been linked to atherogenesis, we explored the possibility that cholesterol crystals promote inflammation by activating the inflammasome pathway.Here we show that human macrophages avidly phagocytose cholesterol crystals and store the ingested cholesterol as cholesteryl esters. Importantly, cholesterol crystals induced dose-dependent secretion of mature IL-1beta from human monocytes and macrophages. The cholesterol crystal-induced secretion of IL-1beta was caspase-1-dependent, suggesting the involvement of an inflammasome-mediated pathway. Silencing of the NLRP3 receptor, the crucial component in NLRP3 inflammasome, completely abolished crystal-induced IL-1beta secretion, thus identifying NLRP3 inflammasome as the cholesterol crystal-responsive element in macrophages. The crystals were shown to induce leakage of the lysosomal protease cathepsin B into the cytoplasm and inhibition of this enzyme reduced cholesterol crystal-induced IL-1beta secretion, suggesting that NLRP3 inflammasome activation occurred via lysosomal destabilization.The cholesterol crystal-induced inflammasome activation in macrophages may represent an important link between cholesterol metabolism and inflammation in atherosclerotic lesions
    corecore