382 research outputs found
A simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: the case of big coions
Monte Carlo simulations of a spherical macroion, surrounded by a
size-asymmetric electrolyte in the primitive model, were performed. We
considered 1:1 and 2:2 salts with a size ratio of 2 (i.e., with coions twice
the size of counterions), for several surface charge densities of the
macrosphere. The radial distribution functions, electrostatic potential at the
Helmholtz surfaces, and integrated charge are reported. We compare these
simulational data with original results obtained from the Ornstein-Zernike
integral equation, supplemented by the hypernetted chain/hypernetted chain
(HNC/HNC) and hypernetted chain/mean spherical approximation (HNC/MSA)
closures, and with the corresponding calculations using the modified
Gouy-Chapman and unequal-radius modified Gouy-Chapman theories. The HNC/HNC and
HNC/MSA integral equations formalisms show good concordance with Monte Carlo
"experiments", whereas the notable limitations of point-ion approaches are
evidenced. Most importantly, the simulations confirm our previous theoretical
predictions of the non-dominance of the counterions in the size-asymmetric
spherical electrical double layer [J. Chem. Phys. 123, 034703 (2005)], the
appearance of anomalous curvatures at the outer Helmholtz plane and the
enhancement of charge reversal and screening at high colloidal surface charge
densities due to the ionic size asymmetry.Comment: 11 pages, 7 figure
Experience of the cleft lip and palate clinic at the hospital general de México 2017-2023
Background: The care of cleft lip and palate patients at the general hospital of Mexico has nearly 70 years of experience.
Methods: An observational study of a 7-year cohort of resolved cases of cleft lip and palate by the plastic and reconstructive surgery service of the general hospital of Mexico (2017-2023) was conducted.
Results: The 121 patients were recorded, with 47 palatoplasties, 44 primary cheiloplasties, 24 secondary cheiloplasties, and 11 veloplasties performed. All patients are evaluated by a multidisciplinary team composed of plastic surgery, dentistry, clinical nutrition, speech therapy, audiology, genetics, and psychology to determine a comprehensive treatment plan.
Conclusions: The data reported by the cohort in this work aligns with international reports. The frequency of cases decreased due to the COVID-19 pandemic, but has increased in recent years
Interplay of superexchange and orbital degeneracy in Cr-doped LaMnO3
We report on structural, magnetic and Electron Spin Resonance (ESR)
investigations in the manganite system LaMn_{1-x}Cr_{x}O_{3} (x<=0.5). Upon
Cr-doping we observe a reduction of the Jahn-Teller distortion yielding less
distorted orthorhombic structures. A transition from the Jahn-Teller distorted
O' to the pseudocubic O phase occurs between 0.3<x<0.4. A clear connection
between this transition and the doping dependence of the magnetic and ESR
properties has been observed. The effective moments determined by ESR seem
reduced with respect to the spin-only value of both Mn^{3+} and Cr^{3+} ions
Ice sheet–free West Antarctica during peak early Oligocene glaciation
One of Earth’s most fundamental climate shifts – the greenhouse-icehouse transition 34 Ma ago – initiated Antarctic ice-sheet build-up, influencing global climate until today. However, the extent of the ice sheet during the Early Oligocene Glacial Maximum (~33.7–33.2 Ma) that immediately followed this transition, a critical knowledge gap for assessing feedbacks between permanently glaciated areas and early Cenozoic global climate reorganization, is uncertain. Here, we present shallow-marine drilling data constraining earliest Oligocene environmental conditions on West Antarctica’s Pacific margin – a key region for understanding Antarctic ice sheet-evolution. These data indicate a cool-temperate environment, with mild ocean and air temperatures preventing West Antarctic Ice Sheet formation. Climate-ice sheet modeling corroborates a highly asymmetric Antarctic ice sheet, thereby revealing its differential regional response to past and future climatic change
Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials
A unified homogenization procedure for split ring metamaterials taking into
account time and spatial dispersion is introduced. The procedure is based on
two coupled systems of equations. The first one comes from an approximation of
the metamaterial as a cubic arrangement of coupled LC circuits, giving the
relation between currents and local magnetic field. The second equation comes
from macroscopic Maxwell equations, and gives the relation between the
macroscopic magnetic field and the average magnetization of the metamaterial.
It is shown that electromagnetic and magnetoinductive waves propagating in the
metamaterial are obtained from this analysis. Therefore, the proposed time and
spatially dispersive permeability accounts for the characterization of the
complete spectrum of waves of the metamaterial. Finally, it is shown that the
proposed theory is in good quantitative and qualitative agreement with full
wave simulations.Comment: 4 pages, 3 figure
The Essentials of Protein Import in the Degenerate Mitochondrion of Entamoeba histolytica
Several essential biochemical processes are situated in mitochondria. The metabolic transformation of mitochondria in distinct lineages of eukaryotes created proteomes ranging from thousands of proteins to what appear to be a much simpler scenario. In the case of Entamoeba histolytica, tiny mitochondria known as mitosomes have undergone extreme reduction. Only recently a single complete metabolic pathway of sulfate activation has been identified in these organelles. The E. histolytica mitosomes do not produce ATP needed for the sulfate activation pathway and for three molecular chaperones, Cpn60, Cpn10 and mtHsp70. The already characterized ADP/ATP carrier would thus be essential to provide cytosolic ATP for these processes, but how the equilibrium of inorganic phosphate could be maintained was unknown. Finally, how the mitosomal proteins are translocated to the mitosomes had remained unclear. We used a hidden Markov model (HMM) based search of the E. histolytica genome sequence to discover candidate (i) mitosomal phosphate carrier complementing the activity of the ADP/ATP carrier and (ii) membrane-located components of the protein import machinery that includes the outer membrane translocation channel Tom40 and membrane assembly protein Sam50. Using in vitro and in vivo systems we show that E. histolytica contains a minimalist set up of the core import components in order to accommodate a handful of mitosomal proteins. The anaerobic and parasitic lifestyle of E. histolytica has produced one of the simplest known mitochondrial compartments of all eukaryotes. Comparisons with mitochondria of another amoeba, Dictystelium discoideum, emphasize just how dramatic the reduction of the protein import apparatus was after the loss of archetypal mitochondrial functions in the mitosomes of E. histolytica
Anaerobic animals from an ancient, anoxic ecological niche
Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats
Agents increasing cyclic GMP amplify 5-HT4-elicited positive inotropic response in failing rat cardiac ventricle
Activation of 5-HT4 receptors in failing ventricles elicits a cAMP-dependent positive inotropic response which is mainly limited by the cGMP-inhibitable phosphodiesterase (PDE) 3. However, PDE4 plays an additional role which is demasked by PDE3 inhibition. The objective of this study was to evaluate the effect of cGMP generated by particulate and soluble guanylyl cyclase (GC) on the 5-HT4-mediated inotropic response. Extensive myocardial infarctions were induced by coronary artery ligation in Wistar rats, exhibiting heart failure 6 weeks after surgery. Contractility was measured in left ventricular preparations. Cyclic GMP was measured by EIA. In ventricular preparations, ANP or BNP displayed no impact on 5-HT4-mediated inotropic response. However, CNP increased the 5-HT4-mediated inotropic response as well as the β1-adrenoceptor (β1-AR)-mediated response to a similar extent as PDE3 inhibition by cilostamide. Pretreatment with cilostamide eliminated the effect of CNP. Inhibition of nitric oxide (NO) synthase and soluble GC by l-NAME and ODQ, respectively, attenuated the 5-HT4-mediated inotropic response, whereas the NO donor Sin-1 increased this response. The effects were absent during PDE3 inhibition, suggesting cGMP-dependent inhibition of PDE3. However, in contrast to the effects on the 5-HT4 response, Sin-1 inhibited whereas l-NAME and ODQ enhanced the β1-AR-mediated inotropic response. cGMP generated both by particulate (NPR-B) and soluble GC increases the 5-HT4-mediated inotropic response in failing hearts, probably through inhibition of PDE3. β1-AR and 5-HT4 receptor signalling are subject to opposite regulatory control by cGMP generated by soluble GC in failing hearts. Thus, cGMP from different sources is functionally compartmented, giving differential regulation of different Gs-coupled receptors
- …