410 research outputs found
On deriving p-mode parameters for inclined solar-like stars
Thanks to their high quality, new and upcoming asteroseismic observations -
with CoRoT, Kepler, and from the ground... - can benefit from the experience
gained with helioseismology. We focus in this paper on solar-like oscillations,
for which the inclination of the rotation axis is unknown. We present a
theoretical study of the errors of p-mode parameters determined by means of a
maximum-likelihood estimator, and we also analyze correlations and biases. We
have used different, complementary approaches: we have performed either
semi-analytical computation of the Hessian matrix, fitting of single mean
profiles, or Monte Carlo simulations. We give first analytical approximations
for the errors of frequency, inclination and rotational splitting. The
determination of the inclination is very challenging for the common case of
slow rotators (like the Sun), making difficult the determination of a reliable
rotational splitting. Moreover, due to the numerous correlations, biases - more
or less significant - can appear in the determination of various parameters in
the case of bad inclination fittings, especially when a locking at 90 degrees
occurs. This issue concerning inclination locking is also discussed.
Nevertheless, the central frequency and some derived parameters such as the
total power of the mode are free of such biases.Comment: 9 pages, 6 figures, to appear in A&
Optimal Masks for Low-Degree Solar Acoustic Modes
We suggest a solution to an important problem of observational
helioseismology of the separation of lines of solar acoustic (p) modes of low
angular degree in oscillation power spectra by constructing optimal masks for
Doppler images of the Sun. Accurate measurements of oscillation frequencies of
low-degree modes are essential for the determination of the structure and
rotation of the solar core. However, these measurements for a particular mode
are often affected by leakage of other p modes arising when the Doppler images
are projected on to spherical-harmonics masks. The leakage results in
overlaping peaks corresponding to different oscillation modes in the power
spectra. In this paper we present a method for calculating optimal masks for a
given (target) mode by minimizing the signals of other modes appearing in its
vicinity. We apply this method to time series of 2 years obtained from
Michelson Doppler Imager (MDI) instrument on board SOHO space mission and
demonstrate its ability to reduce efficiently the mode leakage.Comment: to be published in Astrophys.J. Letter
Mercury emissions and stable isotopic compositions at Vulcano Island (Italy)
Sampling and analyses methods for determining the stable isotopic compositions of Hg in an active volcanic
system were tested and optimized at the volcanic complex of Vulcano (Aeolian Islands, Italy). Condensed
gaseous fumarole Hg(fum)
T , plume gaseous elemental Hg(g)
0 and plume particulate Hg(p)
II were obtained at
fumaroles F0, F5, F11, and FA. The average total Hg emissions, based on HgT/SO2 in condensed fumarolic gases
and plumes, range from 2.5 to 10.1 kg yâ1, in agreement with published values [Ferrara, R., Mazzolai, B.,
Lanzillotta, E., Nucaro, E., Pirrone, N., 2000. Volcanoes as emission sources of atmospheric mercury in the
Mediterranean Basin. Sci. Total Environ. 259(1â3), 115â121; Aiuppa, A., Bagnato, E., Witt, M.L.I., Mather, T.A.,
Parello, F., Pyle, D.M., Martin, R.S., 2007. Real-time simultaneous detection of volcanic Hg and SO2 at La Fossa
Crater, Vulcano (Aeolian Islands, Sicily). Geophys. Res. Lett. 34(L21307).]. Plume Hg(p)
II increases with distance
from the fumarole vent, at the expense of Hg(g)
0 and indicates significant in-plume oxidation and
condensation of fumarole Hg(fum)
T .
Relative to the NIST SRM3133 Hg standard, the stable isotopic compositions of Hg are ÎŽ202Hg(fum)
T =â0.74â°Â±0.18
(2SD, n=4) for condensed gaseous fumarole Hg(fum)
T , ÎŽ202Hg(g)
0 =â1.74â°Â±0.36 (2SD, n=1) for plume gaseous
elemental Hg(g)
0 at the F0 fumarole, and ÎŽ202Hg(p)
II =â0.11â°Â±0.18 (2SD, n=4) for plume particulate Hg(p)
II . The
enrichment of Hg(p)
II in the heavy isotopes and Hg(g)
0 in the light isotopes relative to the total condensed fumarolic
Hg(fum)
T gas complements the speciation data and demonstrates a gas-particle fractionation occurring after the gas
expulsion inambient T° atmosphere. A first order Rayleigh equilibriumcondensation isotope fractionation model
yields a fractionation factor αcond-gas of 1.00135±0.00058
On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors
Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from
stochastically driven pulsation is challenging, more so, if one demands that
realistic error estimates be given for all model fitting parameters. As has
been shown by other authors, the traditional method of fitting Lorentzian
profiles to the power spectrum of time-resolved photometric or spectroscopic
data via the Maximum Likelihood Estimation (MLE) procedure delivers good
approximations for these quantities. We, however, show that a conservative
Bayesian approach allows one to treat the detection of modes with minimal
assumptions (i.e., about the existence and identity of the modes).
Methods. We derive a conservative Bayesian treatment for the probability of
Lorentzian profiles being present in a power spectrum and describe an efficient
implementation that evaluates the probability density distribution of
parameters by using a Markov-Chain Monte Carlo (MCMC) technique.
Results. Potentially superior to "best-fit" procedure like MLE, which only
provides formal uncertainties, our method samples and approximates the actual
probability distributions for all parameters involved. Moreover, it avoids
shortcomings that make the MLE treatment susceptible to the built-in
assumptions of a model that is fitted to the data. This is especially relevant
when analyzing solar-type pulsation in stars other than the Sun where the
observations are of lower quality and can be over-interpreted. As an example,
we apply our technique to CoRoT observations of the solar-type pulsator HD
49933.Comment: 12 pages, 11 figures, accepted for publication in Astronomy and
Astrophysic
Exoplanets or Dynamic Atmospheres? The Radial Velocity and Line Shape Variations of 51 Pegasi and Tau Bootis
Because of our relatively low spectral resolution, we compare our
observations with Gray's line bisector data by fitting observed line profiles
to an expansion in terms of orthogonal (Hermite) functions. To obtain an
accurate comparison, we model the emergent line profiles from rotating and
pulsating stars, taking the instrumental point spread function into account. We
describe this modeling process in detail.
We find no evidence for line profile or strength variations at the radial
velocity period in either 51 Peg or in Tau Boo. For 51 Peg, our upper limit for
line shape variations with 4.23-day periodicity is small enough to exclude with
10 sigma confidence the bisector curvature signal reported by Gray & Hatzes;
the bisector span and relative line depth signals reported by Gray (1997) are
also not seen, but in this case with marginal (2 sigma) confidence. We cannot,
however, exclude pulsations as the source of 51 Peg's radial velocity
variation, because our models imply that line shape variations associated with
pulsations should be much smaller than those computed by Gray & Hatzes; these
smaller signals are below the detection limits both for Gray & Hatzes' data and
for our own.
Tau Boo's large radial velocity amplitude and v*sin(i) make it easier to test
for pulsations in this star. Again we find no evidence for periodic line-shape
changes, at a level that rules out pulsations as the source of the radial
velocity variability. We conclude that the planet hypothesis remains the most
likely explanation for the existing data.Comment: 44 pages, 19 figures, plain TeX, accepted to ApJS (companion to
letter astro-ph/9712279
Oscillation frequencies and mode lifetimes in alpha Centauri A
We analyse our recently-published velocity measurements of alpha Cen A
(Butler et al. 2004). After adjusting the weights on a night-by-night basis in
order to optimize the window function to minimize sidelobes, we extract 42
oscillation frequencies with l=0 to 3 and measure the large and small frequency
separations. We give fitted relations to these frequencies that can be compared
with theoretical models and conclude that the observed scatter about these fits
is due to the finite lifetimes of the oscillation modes. We estimate the mode
lifetimes to be 1-2 d, substantially shorter than in the Sun.Comment: Accepted by Ap
Fourier Analysis of Gapped Time Series: Improved Estimates of Solar and Stellar Oscillation Parameters
Quantitative helio- and asteroseismology require very precise measurements of
the frequencies, amplitudes, and lifetimes of the global modes of stellar
oscillation. It is common knowledge that the precision of these measurements
depends on the total length (T), quality, and completeness of the observations.
Except in a few simple cases, the effect of gaps in the data on measurement
precision is poorly understood, in particular in Fourier space where the
convolution of the observable with the observation window introduces
correlations between different frequencies. Here we describe and implement a
rather general method to retrieve maximum likelihood estimates of the
oscillation parameters, taking into account the proper statistics of the
observations. Our fitting method applies in complex Fourier space and exploits
the phase information. We consider both solar-like stochastic oscillations and
long-lived harmonic oscillations, plus random noise. Using numerical
simulations, we demonstrate the existence of cases for which our improved
fitting method is less biased and has a greater precision than when the
frequency correlations are ignored. This is especially true of low
signal-to-noise solar-like oscillations. For example, we discuss a case where
the precision on the mode frequency estimate is increased by a factor of five,
for a duty cycle of 15%. In the case of long-lived sinusoidal oscillations, a
proper treatment of the frequency correlations does not provide any significant
improvement; nevertheless we confirm that the mode frequency can be measured
from gapped data at a much better precision than the 1/T Rayleigh resolution.Comment: Accepted for publication in Solar Physics Topical Issue
"Helioseismology, Asteroseismology, and MHD Connections
Polysorbate 80 Inhibition of Pseudomonas aeruginosa Biofilm Formation and Its Cleavage by the Secreted Lipase LipA
Surface-associated bacterial communities known as biofilms are an important source of nosocomial infections. Microorganisms such as Pseudomonas aeruginosa can colonize the abiotic surfaces of medical implants, leading to chronic infections that are difficult to eradicate. Our study demonstrates that polysorbate 80 (PS80), a surfactant commonly added to food and medicines, is able to inhibit biofilm formation by P. aeruginosa on a variety of surfaces, including contact lenses
Calculation of Spectral Darkening and Visibility Functions for Solar Oscillations
Calculations of spectral darkening and visibility functions for the
brightness oscillations of the Sun resulting from global solar oscillations are
presented. This has been done for a broad range of the visible and infrared
continuum spectrum. The procedure for the calculations of these functions
includes the numerical computation of depth-dependent derivatives of the
opacity caused by p modes in the photosphere. A radiative-transport code was
used for this purpose to get the disturbances of the opacities from temperature
and density fluctuations. The visibility and darkening functions are obtained
for adiabatic oscillations under the assumption that the temperature
disturbances are proportional to the undisturbed temperature of the
photosphere. The latter assumption is the only way to explore any opacity
effects since the eigenfunctions of p-mode oscillations have not been obtained
so far. This investigation reveals that opacity effects have to be taken into
account because they dominate the violet and infrared part of the spectrum.
Because of this dominance, the visibility functions are negative for those
parts of the spectrum. Furthermore, the darkening functions show a
wavelength-dependent change of sign for some wavelengths owing to these opacity
effects. However, the visibility and darkening functions under the assumptions
used contradict the observations of global p-mode oscillations, but it is
beyond doubt that the opacity effects influence the brightness fluctuations of
the Sun resulting from global oscillations
Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime
Convection in stars excites resonant acoustic waves which depend on the sound
speed inside the star, which in turn depends on properties of the stellar
interior. Therefore, asteroseismology is an unrivaled method to probe the
internal structure of a star. We made a seismic study of the metal-poor
subgiant star nu Indi with the goal of constraining its interior structure. Our
study is based on a time series of 1201 radial velocity measurements spread
over 14 nights obtained from two sites, Siding Spring Observatory in Australia
and ESO La Silla Observatory in Chile. The power spectrum of the high precision
velocity time series clearly presents several identifiable peaks between 200
and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09
uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been
identified with amplitudes in the range 53 to 173 cm/s. The mode damping time
is estimated to be about 16 days (1-sigma range between 9 and 50 days),
substantially longer than in other stars like the Sun, the alpha Cen system or
the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte
- âŠ