research

Optimal Masks for Low-Degree Solar Acoustic Modes

Abstract

We suggest a solution to an important problem of observational helioseismology of the separation of lines of solar acoustic (p) modes of low angular degree in oscillation power spectra by constructing optimal masks for Doppler images of the Sun. Accurate measurements of oscillation frequencies of low-degree modes are essential for the determination of the structure and rotation of the solar core. However, these measurements for a particular mode are often affected by leakage of other p modes arising when the Doppler images are projected on to spherical-harmonics masks. The leakage results in overlaping peaks corresponding to different oscillation modes in the power spectra. In this paper we present a method for calculating optimal masks for a given (target) mode by minimizing the signals of other modes appearing in its vicinity. We apply this method to time series of 2 years obtained from Michelson Doppler Imager (MDI) instrument on board SOHO space mission and demonstrate its ability to reduce efficiently the mode leakage.Comment: to be published in Astrophys.J. Letter

    Similar works

    Available Versions

    Last time updated on 04/12/2019