897 research outputs found

    Etching-dependent reproducible memory switching in vertical SiO2 structures

    Full text link
    Vertical structures of SiO2_{2} sandwiched between a top tungsten electrode and conducting non-metal substrate were fabricated by dry and wet etching methods. Both structures exhibit similar voltage-controlled memory behaviors, in which short voltage pulses (1 μ\mus) can switch the devices between high- and low-impedance states. Through the comparison of current-voltage characteristics in structures made by different methods, filamentary conduction at the etched oxide edges is most consistent with the results, providing insights into similar behaviors in metal/SiO/metal systems. High ON/OFF ratios of over 104^{4} were demonstrated.Comment: 6 pages, 3 figures + 2 suppl. figure

    Three-terminal devices to examine single molecule conductance switching

    Get PDF
    We report electronic transport measurements of single-molecule transistor devices incorporating bipyridyl-dinitro oligophenylene-ethynylene dithiol (BPDN-DT), a molecule known to exhibit conductance switching in other measurement configurations. We observe hysteretic conductance switching in 8% of devices with measurable currents, and find that dependence of the switching properties on gate voltage is rare when compared to other single-molecule transistor devices. This suggests that polaron formation is unlikely to be responsible for switching in these devices. We discuss this and alternative switching mechanisms.Comment: 5 pages, 4 figures. Supporting material available upon reques

    Impact of edge shape on the functionalities of graphene-based single-molecule electronics devices

    Get PDF
    We present an ab-initio analysis of the impact of edge shape and graphene-molecule anchor coupling on the electronic and transport functionalities of graphene-based molecular electronics devices. We analyze how Fano-like resonances, spin filtering and negative differential resistance effects may or may not arise by modifying suitably the edge shapes and the terminating groups of simple organic molecules. We show that the spin filtering effect is a consequence of the magnetic behavior of zigzag-terminated edges, which is enhanced by furnishing these with a wedge shape. The negative differential resistance effect is originated by the presence of two degenerate electronic states localized at each of the atoms coupling the molecule to graphene which are strongly affected by a bias voltage. The effect could thus be tailored by a suitable choice of the molecule and contact atoms if edge shape could be controlled with atomic precision.Comment: 11 pages, 20 figure

    Controlling charge injection in organic field-effect transistors using self-assembled monolayers

    Get PDF
    We have studied charge injection across the metal/organic semiconductor interface in bottom-contact poly(3-hexylthiophene) (P3HT) field-effect transistors, with Au source and drain electrodes modified by self-assembled monolayers (SAMs) prior to active polymer deposition. By using the SAM to engineer the effective Au work function, we markedly affect the charge injection process. We systematically examine the contact resistivity and intrinsic channel mobility, and show that chemically increasing the injecting electrode work function significantly improves hole injection relative to untreated Au electrodes.Comment: 5 pages, 2 figures. Supplementary information available upon reques

    Dynamic response of exchange bias in graphene nanoribbons

    Full text link
    The dynamics of magnetic hysteresis, including the training effect and the field sweep rate dependence of the exchange bias, is experimentally investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training effect is present over a large number of cycles. This is reflected in a gradual decrease of the exchange bias with the sequential field cycling. However, at high field sweep rate above 0.5 T/min, the training effect is not prominent. With the increase in field sweep rate, the average value of exchange bias field grows and is found to follow power law behavior. The response of the exchange bias field to the field sweep rate variation is linked to the difference in the time it takes to perform a hysteresis loop measurement compared with the relaxation time of the anti-ferromagnetically aligned spins. The present results may broaden our current understanding of magnetism of GNRs and would be helpful in establishing the GNRs based spintronic devices.Comment: Accepted Applied Physics Letters (In press

    Kondo resonances and anomalous gate dependence of electronic conduction in single-molecule transistors

    Get PDF
    We report Kondo resonances in the conduction of single-molecule transistors based on transition metal coordination complexes. We find Kondo temperatures in excess of 50 K, comparable to those in purely metallic systems. The observed gate dependence of the Kondo temperature is inconsistent with observations in semiconductor quantum dots and a simple single-dot-level model. We discuss possible explanations of this effect, in light of electronic structure calculations.Comment: 5 pages, four figures. Supplementary material at http://www.ruf.rice.edu/~natelson/publications.htm

    Electron Transport Through Molecules: Gate Induced Polarization and Potential Shift

    Full text link
    We analyze the effect of a gate on the conductance of molecules by separately evaluating the gate-induced polarization and the potential shift of the molecule relative to the leads. The calculations use ab initio density functional theory combined with a Green function method for electron transport. For a general view, we study several systems: (1) atomic chains of C or Al sandwiched between Al electrodes, (2) a benzene molecule between Au leads, and (3) (9,0) and (5,5) carbon nanotubes. We find that the polarization effect is small because of screening, while the effect of the potential shift is significant, providing a mechanism for single-molecule transistors.Comment: 4 pages, 4 figure

    Adjusting Permittivity by Blending Varying Ratios of SWNTs

    Get PDF
    A new composite material of singlewalled carbon nanotubes (SWNTs) displays radio frequency (0 to 1 GHz) permittivity properties that can be adjusted based upon the nanotube composition. When varying ratios of raw to functionalized SWNTs are blended into the silicone elastomer matrix at a total loading of 0.5 percent by weight, a target real permittivity value can be obtained between 70 and 3. This has particular use for designing materials for microwave lenses, microstrips, filters, resonators, high-strength/low-weight electromagnetic interference (EMI) shielding, antennas, waveguides, and low-loss magneto-dielectric products for applications like radome construction

    Electron Transport Through Molecules: Self-consistent and Non-self-consistent Approaches

    Full text link
    A self-consistent method for calculating electron transport through a molecular device is proposed. It is based on density functional theory electronic structure calculations under periodic boundary conditions and implemented in the framework of the nonequilibrium Green function approach. To avoid the substantial computational cost in finding the I-V characteristic of large systems, we also develop an approximate but much more efficient non-self-consistent method. Here the change in effective potential in the device region caused by a bias is approximated by the main features of the voltage drop. As applications, the I-V curves of a carbon chain and an aluminum chain sandwiched between two aluminum electrodes are calculated -- two systems in which the voltage drops very differently. By comparing to the self-consistent results, we show that this non-self-consistent approach works well and can give quantitatively good results.Comment: 11 pages, 10 figure

    Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage

    Get PDF
    This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3−5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron ~7.3%, phosphorus ~8.1%, and nitrogen ~28.1%) had surface areas as high as 900 m^2 g^(−1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol^(−1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively
    corecore