188 research outputs found

    Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets

    Full text link
    Two centuries of research on phase transitions have repeatedly highlighted the importance of critical fluctuations that abound in the vicinity of a critical point. They are at the origin of scaling laws obeyed by thermodynamic observables close to second-order phase transitions resulting in the concept of universality classes, that is of paramount importance for the study of organizational principles of matter. Strikingly, in case such soft fluctuations are too abundant they may alter the nature of the phase transition profoundly; the system might evade the critical state altogether by undergoing a discontinuous first-order transition into the ordered phase. Fluctuation-induced first-order transitions have been discussed broadly and are germane for superconductors, liquid crystals, or phase transitions in the early universe, but clear experimental confirmations remain scarce. Our results from neutron scattering and thermodynamics on the model Dzyaloshinskii-Moriya (DM) helimagnet (HM) MnSi show that such a fluctuation-induced first-order transition is realized between its paramagnetic and HM state with remarkable agreement between experiment and a theory put forward by Brazovskii. While our study clarifies the nature of the HM phase transition in MnSi that has puzzled scientists for several decades, more importantly, our conclusions entirely based on symmetry arguments are also relevant for other DM-HMs with only weak cubic magnetic anisotropies. This is in particular noteworthy in light of a wide range of recent discoveries that show that DM helimagnetism is at the heart of problems such as topological magnetic order, multiferroics, and spintronics.Comment: 19 pages, 9 figures, 2 table

    Critical phenomena: 150 years since Cagniard de la Tour

    Full text link
    Critical phenomena were discovered by Cagniard de la Tour in 1822, who died 150 years ago. In order to mark this anniversary, the context and the early history of his discovery is reviewed. We then follow with a brief sketch of the history of critical phenomena, indicating the main lines of development until the present date. Os fen\'omenos cr\'{\i}ticos foram descobertos pelo Cagniard de la Tour em Paris em 1822. Para comemorar os 150 anos da sua morte, o contexto e a hist\'oria initial da sua descoberta \'e contada. Conseguimos com uma descri\c{c}\~ao breve da hist\'oria dos fen\'emenos cr\'{\i}ticos, indicando as linhas principais do desenvolvimento at\'e o presente.Comment: Latex2e, 8 pp, 3 eps figures include

    Crossover between liquid-like and gas-like behaviour in CH4 at 400 K

    Get PDF
    We report experimental evidence for a crossover between a liquid-like state and a gas-like state in fluid methane (CH4). This crossover is observed in all of our experiments, up to 397 K temperature; 2.1 times the critical temperature of methane. The crossover has been characterized with both Raman spectroscopy and X-ray diffraction in a number of separate experiments, and confirmed to be reversible. We associate this crossover with the Frenkel line - a recently hypothesized crossover in dynamic properties of fluids extending to arbitrarily high pressure and temperature, dividing the phase diagram into separate regions where the fluid possesses liquid-like and gas-like properties. On the liquid-like side the Raman-active vibration increases in frequency linearly as pressure is increased, as expected due to the repulsive interaction between adjacent molecules. On the gas-like side this competes with the attractive Van der Waal’s potential leading the vibration frequency to decrease as pressure is increased

    Association between erythrocyte Na+K+-ATPase activity and some blood lipids in type 1 diabetic patients from Lagos, Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Altered levels of erythrocyte Na<sup>+</sup>K<sup>+</sup>-ATPase, atherogenic and anti-atherogenic lipid metabolites have been implicated in diabetic complications but their pattern of interactions remains poorly understood.</p> <p>This study evaluated this relationship in Nigerian patients with Type 1 diabetes mellitus.</p> <p>Methods</p> <p>A total of 34 consented Type 1 diabetic patients and age -matched 27 non-diabetic controls were enrolled. Fasting plasma levels of total cholesterol, triglycerides and HDL-cholesterol were determined spectrophotometrically and LDL-cholesterol estimated using Friedewald formula. Total protein content and Na+K+-ATPase activity were also determined spectrophotometrically from ghost erythrocyte membrane prepared by osmotic lysis.</p> <p>Results</p> <p>Results indicate significant (P < 0.05) reduction in Na<sup>+</sup>K<sup>+</sup>-ATPase activity in the Type 1 diabetic patients (0.38 ± 0.08 vs. 0.59 ± 0.07 uM Pi/mgprotein/h) compared to the control but with greater reduction in the diabetic subgroup with poor glycemic control (n = 20) and in whom cases of hypercholesterolemia (8.8%), hypertriglyceridemia (2.9%) and elevated LDL-cholesterol (5.9% each) were found. Correlation analyses further revealed significant (P < 0.05) inverse correlations [r = -(0.708-0.797] between all the atherogenic lipid metabolites measured and Na<sup>+</sup>K<sup>+</sup>-ATPase in this subgroup contrary to group with good glycemic control or non-diabetic subjects in which significant (P < 0.05) Na<sup>+</sup>K<sup>+</sup>-ATPase and HDL-C association were found (r = 0.427 - 0.489). The Na<sup>+</sup>K<sup>+</sup>-ATPase from the diabetic patients also exhibited increased sensitivity to digoxin and alterations in kinetic constants Vmax and Km determined by glycemic status of the patients.</p> <p>Conclusion</p> <p>It can be concluded that poor glycemic control evokes greater reduction in erythrocyte Na<sup>+</sup>K<sup>+</sup>-ATPase activity and promote enzyme-blood atherogenic lipid relationships in Type 1 diabetic Nigerian patients.</p

    Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones

    Get PDF
    Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples

    Global electricity network - Feasibility study

    Full text link
    With the strong development of renewable energy sources worldwide, the concept of a global electricity network has been imagined in order to take advantage of the diversity from different time zones, seasons, load patterns and the intermittency of the generation, thus supporting a balanced coordination of power supply of all interconnected countries. The TB presents the results of the feasibility study performed by WG C1.35. It addresses the challenges, benefits and issues of uneven distribution of energy resources across the world. The time horizon selected is 2050. The study finds significant potential benefits of a global interconnection, identifies the most promising links, and includes sensitivity analyses to different factors, such as wind energy capacity factors or technology costs

    Methanosarcina acetivorans C2A Topoisomerase IIIα, an Archaeal Enzyme with Promiscuity in Divalent Cation Dependence

    Get PDF
    Topoisomerases play a fundamental role in genome stability, DNA replication and repair. As a result, topoisomerases have served as therapeutic targets of interest in Eukarya and Bacteria, two of the three domains of life. Since members of Archaea, the third domain of life, have not been implicated in any diseased state to-date, there is a paucity of data on archaeal topoisomerases. Here we report Methanosarcina acetivorans TopoIIIα (MacTopoIIIα) as the first biochemically characterized mesophilic archaeal topoisomerase. Maximal activity for MacTopoIIIα was elicited at 30–35°C and 100 mM NaCl. As little as 10 fmol of the enzyme initiated DNA relaxation, and NaCl concentrations above 250 mM inhibited this activity. The present study also provides the first evidence that a type IA Topoisomerase has activity in the presence of all divalent cations tested (Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+ and Cd2+). Activity profiles were, however, specific to each metal. Known type I (ssDNA and camptothecin) and type II (etoposide, novobiocin and nalidixic acid) inhibitors with different mechanisms of action were used to demonstrate that MacTopoIIIα is a type IA topoisomerase. Alignment of MacTopoIIIα with characterized topoisomerases identified Y317 as the putative catalytic residue, and a Y317F mutation ablated DNA relaxation activity, demonstrating that Y317 is essential for catalysis. As the role of Domain V (C-terminal domain) is unclear, MacTopoIIIα was aligned with the canonical E. coli TopoI 67 kDa fragment in order to construct an N-terminal (1–586) and a C-terminal (587–752) fragment for analysis. Activity could neither be elicited from the fragments individually nor reconstituted from a mixture of the fragments, suggesting that native folding is impaired when the two fragments are expressed separately. Evidence that each of the split domains plays a role in Zn2+ binding of the enzyme is also provided
    • …
    corecore