24 research outputs found

    The role of HMGA1 protein in gastroenteropancreatic neuroendocrine tumors

    Get PDF
    Neuroendocrine tumors (NETs) are neoplasms derived from neuroendocrine cells. One of their main features is to often remain asymptomatic and clinically undetectable. High Mobility Group A (HMGA) proteins belong to a family of non-histone chromatinic proteins able to modulate gene expression through the interaction with DNA and transcription factors. They are overexpressed in most of the human malignancies, playing a critical role in carcinogenesis. However, their expression levels and their role in neuroendocrine carcinogenesis has not been exhaustively evaluated until now. Therefore, in this study, we have addressed the validity of using the expression of HMGA1 as a diagnostic marker and have investigated its role in NET carcinogenesis. The expression of HMGA1 has been evaluated by qRT-PCR and immunohistochemistry, using NET tissue microarrays, in a cohort of gastroenteropancreatic (GEP)-NET samples. The expression levels of HMGA1 have been then correlated with the main clinical features of NET samples. Finally, the contribution of HMGA1 overexpression to NET development has been addressed as far as the modulation of proliferation and migration abilities of NET cells is concerned. Here, we report that HMGA1 is overexpressed in GEP-NET samples, at both mRNA and protein levels, and that the silencing of HMGA1 protein expression interferes with the ability of NET cells to proliferate and migrate through the downregulation of Cyclin E, Cyclin B1 and EZH2. These results propose the HMGA proteins as new diagnostic and prognostic markers

    Transcriptional Enhancer Factor Domain Family member 4 Exerts an Oncogenic Role in Hepatocellular Carcinoma by Hippo-Independent Regulation of Heat Shock Protein 70 Family Members.

    Get PDF
    Transcriptional enhancer factor domain family member 4 (TEAD4) is a downstream effector of the conserved Hippo signaling pathway, regulating the expression of genes involved in cell proliferation and differentiation. It is up-regulated in several cancer types and is associated with metastasis and poor prognosis. However, its role in hepatocellular carcinoma (HCC) remains largely unexplored. Using data from The Cancer Genome Atlas, we found that TEAD4 was overexpressed in HCC and was associated with aggressive HCC features and worse outcome. Overexpression of TEAD4 significantly increased proliferation and migration rates in HCC cells in vitro as well as tumor growth in vivo. Additionally, RNA sequencing analysis of TEAD4-overexpressing HCC cells demonstrated that TEAD4 overexpression was associated with the up-regulation of genes involved in epithelial-to-mesenchymal transition, proliferation, and protein-folding pathways. Among the most up-regulated genes following TEAD4 overexpression were the 70-kDa heat shock protein (HSP70) family members HSPA6 and HSPA1A. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction experiments demonstrated that TEAD4 regulates HSPA6 and HSPA1A expression by directly binding to their promoter and enhancer regions. The pharmacologic inhibition of HSP70 expression in TEAD4-overexpressing cells reduced the effect of TEAD4 on cell proliferation. Finally, by overexpressing TEAD4 in yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ)-knockdown HCC cells, we showed that the effect of TEAD4 on cell proliferation and its regulation of HSP70 expression does not require YAP and TAZ, the main effectors of the Hippo signaling pathway. Conclusion: A novel Hippo-independent mechanism for TEAD4 promotes cell proliferation and tumor growth in HCC by directly regulating HSP70 family members

    Diagnostic Targeted Sequencing Panel for Hepatocellular Carcinoma Genomic Screening

    Get PDF
    Commercially available targeted panels miss genomic regions frequently altered in hepatocellular carcinoma (HCC). We sought to design and benchmark a sequencing assay for genomic screening of HCC. We designed an AmpliSeq custom panel targeting all exons of 33 protein-coding and two long noncoding RNA genes frequently mutated in HCC, TERT promoter, and nine genes with frequent copy number alterations. By using this panel, the profiling of DNA from fresh-frozen (n = 10, 1495×) and/or formalin-fixed, paraffin-embedded (FFPE) tumors with low-input DNA (n = 36, 530×) from 39 HCCs identified at least one somatic mutation in 90% of the cases. Median of 2.5 (range, 0 to 74) and 3 (range, 0 to 76) mutations were identified in fresh-frozen and FFPE tumors, respectively. Benchmarked against the mutations identified from Illumina whole-exome sequencing (WES) of the corresponding fresh-frozen tumors (105×), 98% (61 of 62) and 100% (104 of 104) of the mutations from WES were detected in the 10 fresh-frozen tumors and the 36 FFPE tumors, respectively, using the HCC panel. In addition, 18 and 70 somatic mutations in coding and noncoding genes, respectively, not found by WES were identified by using our HCC panel. Copy number alterations between WES and our HCC panel showed an overall concordance of 86%. In conclusion, we established a cost-effective assay for the detection of genomic alterations in HCC

    HMGA1 Expression in Human Hepatocellular Carcinoma Correlates with Poor Prognosis and Promotes Tumor Growth and Migration in in vitro Models

    Get PDF
    HMGA1 is a non-histone nuclear protein that regulates cellular proliferation, invasion and apoptosis and is overexpressed in many carcinomas. In this study we sought to explore the expression of HMGA1 in HCCs and cirrhotic tissues, and its effect in in vitro models.; We evaluated HMGA1 expression using gene expression microarrays (59 HCCs, of which 37 were matched with their corresponding cirrhotic tissue and 5 normal liver donors) and tissue microarray (192 HCCs, 108 cirrhotic tissues and 79 normal liver samples). HMGA1 expression was correlated with clinicopathologic features and patient outcome. Four liver cancer cell lines with stable induced or knockdown expression of HMGA1 were characterized using in vitro assays, including proliferation, migration and anchorage-independent growth.; HMGA1 expression increased monotonically from normal liver tissues to cirrhotic tissue to HCC (P<.01) and was associated with Edmondson grade (P<.01). Overall, 51% and 42% of HCCs and cirrhotic tissues expressed HMGA1, respectively. Patients with HMGA1-positive HCCs had earlier disease progression and worse overall survival. Forced expression of HMGA1 in liver cancer models resulted in increased cell growth and migration, and vice versa. Soft agar assay showed that forced expression of HMGA1 led to increased foci formation, suggesting an oncogenic role of HMGA1 in hepatocarcinogenesis.; HMGA1 is frequently expressed in cirrhotic tissues and HCCs and its expression is associated with high Edmondson grade and worse prognosis in HCC. Our results suggest that HMGA1 may act as oncogenic driver of progression, implicating it in tumor growth and migration potential in liver carcinogenesis

    Acute Delta Hepatitis in Italy spanning three decades (1991–2019): Evidence for the effectiveness of the hepatitis B vaccination campaign

    Get PDF
    Updated incidence data of acute Delta virus hepatitis (HDV) are lacking worldwide. Our aim was to evaluate incidence of and risk factors for acute HDV in Italy after the introduction of the compulsory vaccination against hepatitis B virus (HBV) in 1991. Data were obtained from the National Surveillance System of acute viral hepatitis (SEIEVA). Independent predictors of HDV were assessed by logistic-regression analysis. The incidence of acute HDV per 1-million population declined from 3.2 cases in 1987 to 0.04 in 2019, parallel to that of acute HBV per 100,000 from 10.0 to 0.39 cases during the same period. The median age of cases increased from 27 years in the decade 1991-1999 to 44 years in the decade 2010-2019 (p < .001). Over the same period, the male/female ratio decreased from 3.8 to 2.1, the proportion of coinfections increased from 55% to 75% (p = .003) and that of HBsAg positive acute hepatitis tested for by IgM anti-HDV linearly decreased from 50.1% to 34.1% (p < .001). People born abroad accounted for 24.6% of cases in 2004-2010 and 32.1% in 2011-2019. In the period 2010-2019, risky sexual behaviour (O.R. 4.2; 95%CI: 1.4-12.8) was the sole independent predictor of acute HDV; conversely intravenous drug use was no longer associated (O.R. 1.25; 95%CI: 0.15-10.22) with this. In conclusion, HBV vaccination was an effective measure to control acute HDV. Intravenous drug use is no longer an efficient mode of HDV spread. Testing for IgM-anti HDV is a grey area requiring alert. Acute HDV in foreigners should be monitored in the years to come

    TEAD4 promotes tumorigenesis via regulation of HSP70B expression in hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) represents more than 90% of primary liver cancers with almost 800,000 deaths each year and increasing incidence. Despite the progress done in preventing, treating and improving patients’ life, incidence and mortality still rising. Surveillance programmes allow the diagnosis of early stage tumors that can benefit from therapies with curative intent such as resection, liver transplantation or local ablation. On the other hand, advanced HCC stages have limited benefit from chemoembolization and systemic treatments like sorafenib or regorafenib. Recent development of next generations sequence technologies has been useful to unveil the genetic and molecular landscape of HCC. However, the high heterogeneity of HCC together difficulties the development of more effective therapies. Thus, the identification of new molecular target is vital to develop more effective therapies for HCC patients. TEAD4 is a member of the transcriptional enhancer factor family (TEF) that has been found dysregulated in different tumor entities. Several studies have validated its oncogenic role in the tumorigenic process by regulating key pathways involved in proliferation, migration and invasiveness. However, TEAD4 role in liver carcinogenesis remains still to be elucidate. The present work demonstrated that TEAD4 promote hepatocarcinogenesis by regulating the transcription and the expression of HSP70B, member of the heat shock protein family. The evidence provided here suggest a novel mechanism inducing hepatocarcinogenesis that be exploit as new potential therapeutic target for HCC treatment

    HMGA1 silencing reduces stemness and temozolomide resistance in glioblastoma stem cells

    No full text
    Glioblastoma multiforme (GBM) develops from a small subpopulation of stem-like cells, which are endowed with the ability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. These cells are resistant to conventional chemo- and radiotherapy and are hence also responsible for tumor recurrence. HMGA1 overexpression has been shown to correlate with proliferation, invasion, and angiogenesis of GBMs and to affect self-renewal of cancer stem cells from colon cancer. The role of HMGA1 in GBM tumor stem cells is not completely understood

    Infiltration by IL22-Producing T Cells Promotes Neutrophil Recruitment and Predicts Favorable Clinical Outcome in Human Colorectal Cancer.

    No full text
    Immune cell infiltration in colorectal cancer effectively predicts clinical outcome. IL22, produced by immune cells, plays an important role in inflammatory bowel disease, but its relevance in colorectal cancer remains unclear. Here, we addressed the prognostic significance of IL22+ cell infiltration in colorectal cancer and its effects on the composition of tumor microenvironment. Tissue microarrays (TMA) were stained with an IL22-specific mAb, and positive immune cells were counted by expert pathologists. Results were correlated with clinicopathologic data and overall survival (OS). Phenotypes of IL22-producing cells were assessed by flow cytometry on cell suspensions from digested specimens. Chemokine production was evaluated in vitro upon colorectal cancer cell exposure to IL22, and culture supernatants were used to assess neutrophil migration in vitro Evaluation of a testing (n = 425) and a validation TMA (n = 89) revealed that high numbers of IL22 tumor-infiltrating immune cells were associated with improved OS in colorectal cancer. Ex vivo analysis indicated that IL22 was produced by CD4+ and CD8+ polyfunctional T cells, which also produced IL17 and IFNÎł. Exposure of colorectal cancer cells to IL22 promoted the release of the neutrophil-recruiting chemokines CXCL1, CXCL2, and CXCL3 and enhanced neutrophil migration in vitro Combined survival analysis revealed that the favorable prognostic significance of IL22 in colorectal cancer relied on the presence of neutrophils and was enhanced by T-cell infiltration. Altogether, colorectal cancer-infiltrating IL22-producing T cells promoted a favorable clinical outcome by recruiting beneficial neutrophils capable of enhancing T-cell responses
    corecore